SEARCH STRATEGIES FOR Al PRODUCTION SYSTEMS

summing the arc costs encountered while tracing the pointers from 7 to s.
(This path is the lowest cost path from s to n found so far by the search
algorithm. The value of g (n) for certain nodes may decrease if the search
tree is altered in step 7.) Notice that this definition implies
g(n) = g*(n). For the estimate h(n), of h*(n), we rely on heuristic
information from the problem domain. Such information might be
similar to that used in the function W (n) in the 8-puzzle example. We
call 4 the heuristic function and will discuss it in more detail later.

Suppose we now use as an evaluation function
Sf(n)=g(n) + h(n).

We call the GRAPHSEARCH algorithm using this evaluation function
for ordering nodes, algorithm A. Note that when 4 = 0 and g=d (the
depth of a node in the search tree), algorithm A is identical to
breadth-first search. We claimed earlier that the breadth-first algorithm is
guaranteed to find a minimal length path to a goal. We now show that if
is a lower bound on & * (that is, if A (n) =< h*(n) for all nodes n), then
algorithm A will find an optimal path to a goal. When algorithm A uses an
h function that is a lower bound on 4 * , we call it algorithm A* (read
“A-star”). Since h = 0 is certainly a lower bound on 4 * , the fact that the
breadth-first algorithm finds minimal length paths follows directly as a
special case of this more general result for algorithm A*,

243. THE ADMISSIBILITY OF A*.

Let us say that a search algorithm is admissible if, for any graph, it
always terminates in an optimal path from s to a goal node whenever a
path from s to a goal node exists. In this section we show informally that
A* is admissible.

To show that an algorithm is admissible, it is necessary to show, at least,
that it terminates whenever a goal node is accessible. The GRAPH-
SEARCH algorithm terminates (if at all) either in step 3 or in step 5.
Notice that in every cycle through the loop of the algorithm, a node is
removed from OPEN and that only a finite number of new successors are
added to OPEN. For finite graphs, we ultimately run out of new
successors, and thus, unless the algorithm terminates successfully in step
5 by finding a goal node, it will terminate in step 3 after eventually
depleting OPEN. Therefore,

76

HEURISTIC GRAPH-SEARCH PROCEDURES

RESULT 1: GRAPHSEARCH always terminates for finite
graphs.

Next we would like to show that if a path from s to a goal node exists,
A* will terminate even for infinite graphs. To do so, let us suppose th.e
opposite, that A* does not terminate. Termination is prevented only if
new nodes are forever added to OPEN. But in this case we can show that
even the smallest of the f values of the nodes on OPEN will grow

impossibly large.

Let d*(n) be the length of the shortest path in the implicit graph being
searched from s to any node » in the search tree produced by A*. "ljhpn
since the cost of each arc in the graph is at least some small positive
numbere, g*(n) = d*(n)e. (Recall that g*(n) is the Cf)st of the optimal
path from s to n, and that g(n) is the cost of the path in the search tree
from s to node n.) Clearly, g(n) = g*(n), and thus g(n) = d*(n)e. If
h(n)=0 (which we henceforth assume), f(n)= g(n), and thus
f(n) = d*(n)e. In particular, for every node n on OPEN, the valug of
f(n)is at least as large as d*(n)e. Even though A* selects for expansion
that node on OPEN whose f value is smallest, the node selected w1!1
ultimately have an arbitrarily large value of d* and therefore also of f'if
A* does not terminate.

Now, to show that A* must eventually terminate, we show that before
termination of A*, there is always a node n on OPEN such tha}t
f(n) < f*(s). Let the ordered sequence (s = ng, ny, . . ., ny), where ny is
a goal node, be an optimal path from s to a goal node. Then, for any time
before A* terminates, let n’ be the first node in this sequence that is on
OPEN. (There must be at least one such node, because s ison OPEN at
the beginning and if n; is on CLOSED, A* has terminated.) By the
definition of f for A*, we have

f(n') = g(n') + h(n).

We know that A* has already found an optimal path to n’ §ince n’is on an h
optimal path to a goal and all of the ancestors on this path are on ||

CLOSED. Therefore, g(n’) = g*(n’) and
f(n') =g*(n) + h(n').

£

ey
7 Yl ; x*"LJ

Since we are assuming h (n’) < h*(n’), we can write

J(r) < g*(w') + h*(n) = f*(n).

77

