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But the /* value of any node on an optimal path is equal to f*(s), the
minimal cost, and therefore f(n’) < f*(s). Thus, we have:

RESULT 2: At any time before A* terminates, there
exists on OPEN a node n’ that is on
an optimal path from s to a goal node, with

f(n') = f*(s).

Combining this result with our previous argument, that even the
smallest f'values of the nodes on OPEN of a nonterminating A* become
unbounded, shows that A* must terminate even for infinite graphs. Thus,

RESULT 3: If there is a path from s to a goal node,
A¥* terminates.

RESULT 3 has an interesting corollary, namely, that any node, n, on
OPEN with f(n) < f*(s) will eventually be selected for expansion by
A*. We leave the proof as an exercise for the reader.

Now it is a simple matter to show that A* is admissible. First, we note
again that A* can either terminate by finding a goal node in step 5 or,
after depleting OPEN, in step 3. But OPEN can never become empty
before termination if there is a path from s to a goal node because, by
RESULT 2, there will always be a node on OPEN (and on an optimal
path). Therefore, A* must terminate by finding a goal node.

Next we would like to show that A* only terminates by finding an
optimal path to a goal node. Suppose A* were to terminate at some goal
node, ¢, without finding an optimal path, that is, (1) = g(¢) > f*(s).
But, by RESULT 2, there existed just before termination a node, n’, on
OPEN and on an optimal path with f(n’) < f*(s) < f(¢). Thus, at this
stage, A* would have selected n’ for expansion rather than ¢, contradict-
ing our supposition that A* terminated. Therefore, we finally have

RESULT 4:  Algorithm A* is admissible. (That is, if
there is a path from s to a goal node, A*
terminates by finding an optimal path.)

Each node selected for expansion by A* has an interesting property
that follows directly from RESULT 2: Its f value is never greater than the
cost, f*(s), of an optimal path. This result will be important to us later.
To show that it is true, let # be any node selected for expansion by A*. If n
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is a goal node, we have f(n) = f*(s) by RESULT 4; so suppose n is not a
goal node. Now A* selected n before termination, so at this time (by
RESULT 2) we know that there existed on OPEN some node »n’ on an
optimal path from s to a goal with f(n’) < f*(s). If n = n’, our result is
established. Otherwise, we know that A* chose to expand n rather than
n’; therefore it must have been the case that

f(n) = f(n) = f*(s) .
Therefore, we have

RESULT 5: For any node n selected for expansion by
A*, f(n) = f*(s)-

2.44. COMPARISON OF A* ALGORITHMS

The precision of our heuristic function 4 depends on the amount of
heuristic knowledge it possesses about the problem domain. Clearly,
using h(n) = 0 reflects complete absence of any heuristic information
about the problem, even though such an estimate is a lower bound on
h*(n) and therefore leads to an admissible algorithm.

Let us compare two versions of A*, namely, A; and A, using the
following evaluation functions:

fi(n) = gi(n) + hy(n)
and
Sfo(n) = ga(n) + hy(n)

where h; and h, are both lower bounds on 4 * . We say that algorithm A,
is more informed than algorithm A; if for all nongoal nodes, n,
hy(n) > h;(n). This definition seems intuitively reasonable, since with A
bounded from above by h* for admissibility, one suspects that using
larger values of 4 (and thus values closer to & * ) requires more accurate
heuristic information.

As an example, consider the 8-puzzle solved in Figure 2.8. There we
used the evaluation function f(n) = d(n) + W(n). We can interpret
the search process of that example as an application of A* with
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