SEARCH STRATEGIES FOR Al PRODUCTION SYSTEMS

Fig. 2.8 A search tree using an evaluation function.

expanded. We see that the same solution path is found here as was found
by the other §earch methods, although the use of the evaluation function
has resulted in substantially fewer nodes being expanded. (If we simply

use the evaluation function f(n) = d(n), we get the breadth-first search
process.)

The choice of evaluation function critically determines search results.
The use of an evaluation function that fails to recognize the true promise
of some nodes can result in nonminimal cost paths; whereas, the use of an
evaluation function that overestimates the promise of all nodes (such as
the evaluation function yielding breadth-first search) results in expansion
of too many nodes. In the next few sections, we develop some theoretical

resu}ts about the performance of GRAPHSEARCH when it uses a
particular kind of evaluation function.

2.4.2. ALGORITHM A

Let us Qeﬁne the evaluation function f so that its value, f(n), at any
node n estimates the sum of the cost of the minimal cost path from the
start node s to node n plus the cost of a minimal cost path from node ntoa

74

HEURISTIC GRAPH-SEARCH PROCEDURLS

goal node. That is, f(n) is an estimate of the cost of a minimal cost path
constrained to go through node n. That node on OPEN having the
smallest value of fis then the node estimated to impose the least severe

constraint; hence 1t is appropriate that it be expanded next.

Before demonstrating some of the properties of this evaluation
function, we first introduce some helpful notation. Let the function
k(n;,n;) give the actual costof a minimal cost path between two arbitrary
nodes n; and n;. (The function k is undefined for nodes having no path
petween them.) The cost of a minimal cost path from node n to some
particular goal node, i, is then given by k(n,t;). We let h*(n) be the
minimum of all of the k (n,t;) over the entire set of goal nodes {t;}
Thus, h*(n) is the cost of the minimal cost path from n to a goal node,
and any path from node n to a goal node that achieves h*(n)is an optimal
path fromntoa goal. (The function h* is undefined for any node n that
has no accessible goal node.)

Often we are interested in knowing the cost k (s,n) of an optimal path
from a given start node, s, to some arbitrary node n. It will simplify our
notation somewhat to introduce a new function g * for this purpose. The
function g * is defined as

g*(n) = k(sn),
foralln accessible from s.

We next define the function f* so thatits value f*(n) at any node n is
the actual cost of an optimal path from node s to node n plus the cost of an
optimal path from node n to a goal node, that is,

fHn)=g*(n) + h*(n) .

" The value of f*(n) is then the cost of an optimal path from s constrained

to go through node 7. (Note that f*(s) = h*(s) is the actual cost of an
unconstrained optimal path from s to 2 goal.)

We desire our evaluation function f to be an estimate of f*. Our
estimate can be given by

f(n) = g(n) + h(n),

. Where g s an estimate of g * and A is an estimate of A * . An obvious choice

for g(n) is the cost of the path in the search tree from s to n given by

75




