
Computer-Generated Pen-and-Ink Illustration of Trees

Oliver Deussen∗ Thomas Strothotte
Faculty of Computer Science, University of Magdeburg, Germany

Abstract

We present a method for automatically rendering pen-and-ink illus-
trations of trees. A given 3-d tree model is illustrated by the tree
skeleton and a visual representation of the foliage using abstract
drawing primitives. Depth discontinuities are used to determine
what parts of the primitives are to be drawn; a hybrid pixel-based
and analytical algorithm allows us to deal efficiently with the com-
plex geometric data. Using the proposed method we are able to
generate illustrations with different drawing styles and levels of ab-
straction. The illustrations generated are spatial coherent, enabling
us to create animations of sketched environments. Applications of
our results are found in architecture, animation and landscaping.

CR Categories: I.3.3 [Picture/Image Generation]: Display
algorithms— [I.3.7]: Three-Dimensional Graphics and Realism—
Animation

Keywords: Biological Systems, Frame Buffer Tricks, Non-
Realistic Rendering

1 Introduction

During the last years, a variety of techniques have been proposed to
sketch and non-photorealistically render objects. Research in this
area was driven by the realization that drawings are able to convey
visual information in a different way than photorealistic images do
[21]. This is one of the reasons why a large percentage of images
in many books are drawings (cf. [22]).

While the proposed methods allow creating line drawings of many
objects and in many different styles, the illustration of plants has
so far been neglected. This is surprising because drawings of these
objects are needed in areas like architecture and landscaping. In
both cases early designs are preferentially visualized as abstract line
drawings that often include many trees [18].

In this paper we propose a method for automatic pen-and-ink il-
lustration of trees. The approach allows us to create a variety of
illustration styles. The underlying models are realistic 3-d plant
geometries generated with the xfrog modeling system proposed by
Lintermann and Deussen [8], but any other surface-oriented plant
model can also be used.

∗Universiẗatsplatz 2, D-39106 Magdeburg, Germany, odeussen@acm.org
http://isgwww.cs.uni-magdeburg.de/˜deussen

In comparison to the art-based illustration styles for trees invented
by Kowalski et al. [7], we are more interested in visually represent-
ing specific plants than to create generic representations. Our aim
is to provide the user with a transition from a tree illustration with a
realistic plant-specific look to an abstract representation consisting
of only a few strokes. This enables the user to select a global degree
of abstraction while at the same time enabling the system to draw
plants in the background with a higher abstraction level. In combi-
nation with different drawing styles, this helps to adapt the visual
appearance of the plants to other objects and also, for instance, al-
lows the user to focus the viewer’s attention on a certain part of the
scene.

Among the various plant types and their combinations, we focus
on complex trees and bushes. Collections of these objects are most
interesting in architecture and landscaping. Also both categories
require abstract visual representations as it is impossible to draw
all the geometry in detail.

1.1 Related Work

Related work in illustrating trees was done in the field of non-
photorealistic rendering and also in botanical plant generation.

Probably the first article with illustrated plants was presented by
Yessios [25]. In an architectural framework he used abstract plant
symbols and combined them with stones and ground materials.

Alvy Ray Smith, one of the early authors dealing with fractals and
formal plant descriptions created a “cartoon tree” with small disks
representing bunches of leaves [19]. A similar representation with
smaller disks was used by Reeves and Blau [14] to constitute their
structured particle systems for rendering realistic trees. The idea
of representing numerous botanical leaves by an abstract geometric
primitive inspired us (like Kowalski et al. [7]) to work on pen-and-
ink illustrations of trees.

A line drawing is usually created by combining a number of brush
or pencil strokes. Researchers in non-photorealistic rendering re-
semble that process by using virtual brushes. Strassmann [20] pro-
posed the “path-and-stroke” metaphor: a path is defined and a phys-
ically simulated brush is used to generate the stroke. Hsu et al. [6]
extended the metaphor by using general objects like textures, im-
ages and recursively defined fractals that are drawn along a given
path.

Salisbury et al. [16] described a method for directing the strokes
in line drawings on the basis of vector fields. In their paper they
also showed an interactively generated tree image. Winkenbach and
Salesin [23, 24] presented a variety of methods for the automatic
generation of pen-and-ink illustrations. In contrast to Strassmann
and Hsu et al. they do not work with individual strokes but with
artistically elaborate stroke textures.

Sasada [17] presented some tree sketches in an architectural en-
vironment. He used images of synthetic tree skeletons that were
mapped onto view-facing polygons. The method of Aono and Ku-
nii [1] was used to create the skeletons, the foliage was not visual-
ized in their computer-generated trees.

Kowalski et al. [7] generated abstract sketches of trees by using ge-
ometric primitives like spheres for defining rough approximations
of a tree’s foliage. These primitives were rendered conventionally

ACM Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.



to achieve gray-scale images. In a second step the images were
used to place graftals – small objects representing leaves or hair –
on the surfaces by applying the “difference image algorithm” pro-
posed earlier by Salisbury et at. [16]. Doing so it is possible to
create sketched images of generic trees, bushes, and grass.

In our work we start from a different point. Our models are de-
tailed tree models consisting of a tree skeleton and leaves. Our line
drawings are the result of visually combining many drawing primi-
tives instead of placing graftal objects on some large geometries. A
drawback of our approach is that we potentially have to deal with
more input data. The solution to this problem is to represent a tree
at several levels of detail. This makes it possible to adapt the geo-
metric representation to what should be presented on the screen: If
a more detailed drawing is to be created, a more detailed geometric
tree description is used.

The use of realistic tree models thus offers some major advantages:
We can make use of existing tree libraries, our tree illustrations can
be abstract but we are also able to draw a specific plant. If the scene
is to be rendered photorealistically later, the visual representation
does not differ much from its illustrated counterpart. Having access
to the detailed 3-d data enables us also to animate the complex line
drawings with sufficient spatial and temporal coherency. Another
advantage is the correct, tree-like shadow generation of our models.

The main contribution of our work is an efficient way of generat-
ing the illustration of realistic plant models using abstract drawing
primitives; furthermore, we present a “depth difference algorithm”
to determine important silhouette lines, which allows us to generate
different levels of visual abstraction.

The remainder of this paper is organized as follows: Section 2 re-
views the artistic work on illustrating trees, in Section 3 our syn-
thetic illustration algorithm is given. Section 4 shows results, and
in Section 5 we give some conclusions.

2 Traditional Illustration of Trees

Among the various styles used by artists to render trees (for a large
set of examples see [3]) one can distinguish between flat styles that
solely represent the shape of a tree and others that also approximate
natural light interaction (cf. [9]).

The tree skeleton is usually drawn up to the second branching level,
primarily by silhouette lines and crosshatching on the stem surface.
The shape of the foliage is either represented by an abstract outline
or by a collection of many small objects which do not necessarily
resemble natural leaves but instead represent the characteristics of
the foliage. In addition, the outline is sometimes drawn by many
small line segments or just a few strokes.

The visual appearance of the foliage can be divided into three areas.
The top of the tree is usually in the direct light and is therefore
visualized by only some details and its outline. In the half shadow,
more details are drawn to achieve an appropriate gray level. In this
area the outline of the leaves is often drawn in detail. The third
area is the shaded part. The three areas are generally not found in
a single illustration, often only the half shadow and the full shadow
region is drawn. Sometimes the complete foliage is represented
uniformly.

Artists use different methods to generate shadows on the foliage:
in many styles more details are drawn and thick lines are used,
sometimes with whole areas being drawn in black. Other styles
add crosshatching to the foliage.

A method for the synthetic illustration of trees must propose
solutions to several subproblems: First, the stem skeleton must be
represented properly by silhouette lines and crosshatching. Second,

an abstract leaf representation must be found that enables the user
to represent different types of leaves as well as different illustration
styles. Third, drawing the leaves must be modulated by the three
areas: the leaves in the light must be represented solely by the
outline of the foliage, leaves in the half shadow should be drawn
with detailed outline or additional crosshatching, and regions of
deep shadow are to be added appropriately.

Tree I Tree II Tree III

Figure 1: Photorealistically rendered images of the synthetic sam-
ple trees: Tree I: complex tree; Tree II: young lime tree; Tree III:
conifer.

3 Automated Illustration of Trees

The first step to create a tree illustration is to create a tree with a
conventional tree modeling program. As mentioned above, we use
the xfrog modeling system [5, 8] for that purpose. The final model
– some of them are shown in Figure 1 – is preprocessed and two
files are created.

In the first file, the geometry of the tree skeleton is stored. Like
artists we only draw the trunk and branches up to the second or-
der in most of our illustrations with higher order branches being
removed.

The second file stores the leaves as particles each with a position
and a normal vector. The normal vectors are obtained by using the
normal vector of the original leaves. If too much data is generated
for all the leaves – Tree I in Figure 1 has about 183,000 leaves –
we reduce them in the modeling system by reducing the number of
leaves at each twig. If this is still too much we position the particles
at the branching positions of the highest-order twigs. In the case of
Tree I we end up with 8,800 particles.

The illustrations are generated as follows: The trunk and branches
are drawn by applying techniques known from non-photorealistic
rendering. The foliage is rendered by representing each leaf by a
drawing primitive – a disk or arbitrary polygon facing the viewer –
and by applying the depth difference algorithm to determine which
part of the primitive outlines are to be drawn. Shadows can be ap-
plied at this stage, vegetation on the ground can also be added and is
processed the same way. The resulting drawings are then composed
to constitute the final image.

3.1 Drawing the tree skeleton
The tree skeleton is an assembly of generalized cylinders each rep-
resenting a branch. The surface is more or less smooth, which al-
lows us to apply analytical silhouette algorithms such as the one
proposed by Markosian et al. [10] or the hybrid solution of Rakar



and Cohen [13] to generate the outline. The depth difference algo-
rithm proposed below can also be applied (see Figure 2).

In addition, the skeleton is shaded conventionally to find dark re-
gions. These regions are then crosshatched in the drawing. The
“Difference Image Algorithm” [16] that places individual strokes
according to the local gray tone of an image is one solution to this
problem. For our purpose a simpler method is sufficient that works
with a variant of the Floyd Steinberg method [4].

The algorithm places short strokes instead of pixels if the cumulated
gray scale is above a given threshold. The area of the stroke is
determined and the corresponding error value is subtracted from
the neighboring pixel values. The direction of the strokes is either
at random or affected by the normal vector of the stem geometry. A
similar technique for directing strokes was already used in [10].

Figure 2: The trunk and main branches of Tree I are extracted and
rendered by silhouette lines and cross hatching.

3.2 Drawing the foliage
The foliage of a tree differs by its very nature from all smooth sur-
faces and therefore must be handled separately. Several thousand
individual surfaces must be combined visually into a shape or a
set of strokes. In our first experiments, we placed special textures
on the leaves of our realistic tree models that looked like strokes.
This is a fast and simple method, but the generated images never
appeared like drawings.

The observation that artists do not draw leaves correctly but
try to represent their visual appearance led us to use abstract
drawing primitives. Each leaf is represented by the outline of
such a primitive, whereas its position is determined by the 3-d
leaf position and the size is controlled by the user. A very simple
drawing primitive is a view-facing disk. While other abstract
drawing primitives are given below, we first describe the second
ingredient of our approach, the depth difference algorithm, by
using this primitive.

Depth differences

Depth differences are used to determine what part of each drawing
primitive is to be drawn to constitute the foliage. Saito and Taka-
hashi [15], two of the early authors in non-photorealistic render-
ing, used the depth-buffer to determine the outline of objects which
were used to enhance photorealistic images. First and second order
derivatives in the depth-buffer were additionally computed to find
important lines on the surface of the objects.

While first and second order depth derivatives are helpful to find
important lines on smooth surfaces, zero order derivatives are help-
ful for determing important lines in collections of isolated surfaces
like assemblies of drawing primitives: The outline of a primitive is

drawn if the maximal depth difference of the surface to the neigh-
boring surfaces is above a given threshold.

Instead of computing the differences analytically - which in the case
of complex tree models is computationally expensive - we use the
depth buffer for this purpose. The primitives are drawn as solids,
the depth buffer is obtained, and for each pixel the depth difference
is computed by comparing its depth value with all neighbor values.
The maximal positive difference for each pixel is taken. This value
indicates how far the pixel is in front of its neighboring pixels. It is
stored in a separate buffer.

For interactive applications those pixels with a depth difference
exeeding a given depth difference threshold are directly used to cre-
ate a bitmap of the outlines. For printing purposes a vectorization
is performed to obtain stroke pathes (see Section 3.4).

It is well known that the values in the depth buffer have a non-linear
characteristic. The depthz in the camera coordinate system or eye
coordinates rsp. is determined from a depth valued (d ∈ [0..1]) by

z =

z1z0(d1−d0)
z1−z0

d− (z1+z0)(d1−d0)
2(z1−z0)

− (d1+d0)
2

(1)

whered0 andd1 are minimal and maximal values represented in
the depth buffer, andz0 andz1 the corresponding depth values of
the near and far clipping plane in the camera projection (cf. [11]).

The depth differences can be computed for the depth values in eye
coordinates to achieve linear differences or directly for the depth
buffer values. In the second case depth differences for remote ob-
jects correspond to much larger differences in eye coordinates. In
consequence the objects are represented by fewer lines.

To determine a depth difference threshold sufficient for the eye
coordinates we compute the depth range of the tree and choose
a percentage of this range, for example 10 percent. Analogously
this is done with depth buffer values. The examples in this pa-
per were rendered using depth buffer values directly by setting
d0 = 0, d1 = 65535, z0 = 1, andz1 = 11. The depth differ-
ence in eye coordinates (z1 − z0) is approximately the one of real
trees.

(a) (b)

Figure 3: Tree I rendered with varying disk size and depth differ-
ence threshold: a) size=0.15, threshold=1000; b) size=0.7, thres-
hold=2000.

Figure 3 shows two sketches of Tree I. In Figure 3(a) small disks
are used and the threshold is low. This results in high detail and a
good approximation of the real model. A more abstract rendering
is achieved if disk size and threshold are enlarged (Figure 3(b)).

The threshold can be constant over the whole image or can be
modulated by other buffers. In Figure 4(c) a shadow buffer was
used to reduce the threshold in the shadow. The resulting image
shows more detail in this area.



Abstract drawing primitives

Apart from disks, a number of drawing primitives can be used to
represent the leaves. In Figure 4(a) a set of nine polygons was gen-
erated to represent leaves from different views. The normals of the
given particles were used to interpolate the individual shapes of the
leaves from the polygons. Using this interpolation scheme, a 3-d
shape can be denoted without strictly adhering to perspective trans-
formations.

If appropriate polygons are used, a representation similar to the
graftals in [7] can be generated, but our interpolation method offers
more freedom, allowing nearly all forms of leaves to be used.

The user is also able to decide to what extent the 3-d impression
is generated: the leaves in Figure 4(b) are not drawn from the full
range of views, instead a subset is used to generate a style between
uniform shapes and the full 3-d impression. In Figure 4(c) the shape
of the leaves is drawn only in the shadow region, additionally the
linewidth is increased.

(a) (b) (c)

Figure 4: Two sketches of Tree II. a) The leaves are rendered using
interpolated polygons from the nine given samples; b) Shadow is
drawn in black, threshold=100. c) Threshold is set to 6,000, shadow
is represented by detail.

3.3 Level-of-Abstraction
As mentioned above, the differences in the depth buffer have a
non-linear characteristic. If they are used directly instead of re-
projecting them into eye coordinates, the same tree that is drawn in
the front with high detail will be sketched automatically by a few
strokes if it is at the back.

The effect can be modulated by changing thez1 to z0 ratio of the
perspective projection which is the basis for Equation (1). A small
ratio causes a small non-linearity, a large ratio above 100:1 results
in less depth resolution in the background and therefore in a small
number of strokes.

This visual level-of-abstraction can be supported by scaling the
primitive size for trees in the background. In [7] a formula for a
scale factorr for the object size of graftals is suggested which uses
a weighted average between a scalingd/s (d desired screen space,
s current screen space of the object) that generates primitives of
visual constant size and primitives that have a constant object size

r = w(d/s) + (1− w) w ∈ [0..1].

In our case, we additionally alloww to be above one and in this case
omit the second term. Now, the abstract drawing primitives appear
larger in the background, which helps to achieve clear object shapes
here.

In Figure 5 the process is shown. In the tree sequence of Figure
5(a) level-of-abstraction was done on the basis of depth differences
only, in Figure 5(b) the size of the drawing primitives is doubled for
the tree at the back.

3.4 Software Framework

The proposed method was designed to work in two environments.
First, a fast method for interactive systems was needed. Second,
high quality images should be produced for printouts, animations
and architectural sketches. As a consequence the software works in
stages that are partly omitted for the interactive process.

In the first step, depth differences have to be determined. In the
interactive environment stem and foliage are rendered together, the
depth buffer is obtained and all pixels above the given depth differ-
ence threshold are drawn in black. The resulting bitmap is directly
used and blended with other geometries of the scene to constitute
the final image.

For drawing purposes - and also for animations with high temporal
coherency - the stem and the foliage are rendered separately, the
images are combined by their depth buffer values to handle occlu-
sion. For each image a separate depth difference threshold is used
later.

For many styles shadows have to be introduced. We have to use
a software implementation of shadows because volume shadows
based on stencil buffering (cf. [11]) do not work for the huge num-
ber of isolated surfaces in the foliage. The result is stored in a sep-
arate shadow buffer. In the interactive case, shadows are omitted.

Now the threshold is applied and the pixels above the threshold are
marked. As mentioned above, the threshold can be modulated by a
shadow buffer, other G-buffers (cf. [15]) or by an arbitrary spatial
function.

For generating high quality images, the bitmaps of the stem and
the foliage are vectorized. We implemented two methods: The first
algorithm determines vectors globally for the bitmaps by applying
least square fitting [12]. The second algorithm adds an index buffer,
a bitmap that stores at each pixel position the primitive identifica-
tion as a color value.

For each depth value above the threshold, it is now possible to ob-
tain the primitive number, therefore vectorization can be performed
for each primitive separately. This results in a higher image quality,
for instance closed primitive outlines can now easily be determined
and represented by closed polygons. As a drawback, the method
which is slow already needs even more time since the index buffer
has to be rendered and processed additionally.

In both cases the polygons are drawn by spline interpolation, and
line styles may be applied. As an example, line styles are responsi-
ble for the shading effect on the tree in Figure 3(b). Among varying
the line width, which was done here, the styles may also affect the
direction of the line or alter the endpoints.

(a) (b)

Figure 5: Tree I rendered for three different distances. a) Primitive
sizes and threshold are constant for all distances. Visual abstraction
is achieved automatically. b) Primitive sizes are enlarged up to the
factor of two for the tree in the back.



4 Results

In Figure 6(a) and (b), Tree III is drawn using view-facing elliptic
primitives of random orientation. After determining which part of
each primitve has to be drawn, a small deformation was applied to
each outline. This helps to achieve a more sketched drawing style.

In Figure 6(b) all visible outlines are drawn, and a threshold of
400 is used. The drawing of Figure 6(a) was created using a slight
modification of the algorithm: Only the lower part of each ellipse is
drawn when visible, the threshold having a value of 100. Rendering
is performed in 10 seconds on our SGI Octane (Maximum Impact),
the conifer consists of 13,200 particles.

The maple tree of Figure 6(c) consists of 16,200 particles which is
far below the original model with 200,000 leaves. The parametriza-
tion of Figure 6(a) was used, threshold was set to 1,000.

Figure 6(d) was created similar to Figure 6(a). Only 2,300 particles
are used, this causes nearly each ellipse to be visible, as a result a
lot of semicircles appear. Figure 6(e) used drawing primitives in the
form of real leaves, a very small threshold of 10 causes all visible
outlines to be drawn.

The tree in Figure 6(f) consists of 90,000 particles, very small el-
lipses were used, shadow is added as black regions. The ground
is represented by 23,000 elliptic primitives of larger size. Only the
shadow is drawn, no primitive outlines are used. In this case ren-
dering is performed in about one minute.

In the interactive version of the proposed algorithm it is possible to
render three trees consisting of 20,000 primitives each and 25,000
ground particles with three frames per second on our SGI Onyx 2
at lower image quality. We hope to improve this in the future.

5 Conclusion and Future Work

We have presented a framework for rendering trees in pen-and-ink.
The tree skeleton and the foliage are processed separately. The
trunk and branches are represented by silhouette lines augmented
by crosshatching in dark areas. The foliage is drawn by using ab-
stract drawing primitives that represent leaves. Such primitives can
be circles, ellipses or other polygons. An interpolation scheme al-
lows us to adapt the form of the primitives to the normal vector of
the particles that are used as input. Depth differences are used to
determine what part of the primitives are drawn.

Our experiments reveal that it is possible to create various illustra-
tion styles with our approach, and they have opened several areas
of future research:

• So far, shadows were introduced into the images by shadow
buffers or by raising detail in shadow regions. As mentioned
in Section 2 artists sometimes use crosshatching on the leaves
to represent shadow. The hatching lines in this case must in-
teract with the leaves. An intersection method as proposed
in [2] can be applied here.

• To reduce the amount of geometric data, level-of-detail has to
be applied to the tree models. Currently we work with some
discrete representations that sometimes cause visual artifacts
if representations are changed. A continuous level-of-detail
algorithm for trees will improve performance while maintain-
ing the visual quality.

• The primary goal of our paper was to provide pen-and-ink
illustrations for architecture and landscaping. Another impor-
tant application are cartoons. New styles and colored versions
of our images need to be developed for that purpose.

References

[1] M. Aono and T. L. Kunii. Botanical tree image generation.IEEE Computer
Graphics and Applications, 4(5):10–34, May 1984.

[2] O. Deussen, J. Hamel, A. Raab, S. Schlechtweg, and T. Strothotte. An illustra-
tion technique using hardware-based intersections and skeletons. InProceedings
of Graphics Interface 99, pages 175–182. Canadian Human-Computer Commu-
nications Society, 1999.

[3] L. Evans. The New Complete Illustration Guide: The Ultimate Trace File for
Architects, Designers, Artists, and Students. Van Nostrand Reinhold Company,
1996.

[4] R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale.Proc.
Soc. Inf. Display, 17:75–77, 1976.

[5] Greenworks GbR. Home page of the xfrog modelling software. http://www.
greenworks.de.

[6] S. Hsu and I. Lee. Drawing and animation using skeletal strokes. InSIGGRAPH
’94 Conference Proceedings, pages 109–118. ACM SIGGRAPH, July 1994.

[7] M. Kowalski, L. Markosian, J. D. Northrup, L. Burdev, R. Barzel, L. Holden,
and J. F. Hughes. Art-based rendering of fur, grass, and trees. InSIGGRAPH ’99
Conference Proceedings. ACM SIGGRAPH, August 1999.

[8] B. Lintermann and O. Deussen. Interactive modeling of plants.IEEE Computer
Graphics and Applications, 19(1):56–65, January/February 1999.

[9] F. Lohan.The drawing handbook. Contemporary Books, Chicago, 1993.

[10] L. Markosian, M. A. Kowalski, S. J. Trychin, L. D. Bourdev, D. Goldstein, and
J. F. Hughes. Real-time nonphotorealistic rendering. In T. Whitted, editor,SIG-
GRAPH ’97 Conference Proceedings, pages 415–420. ACM SIGGRAPH, 1997.

[11] T. McReynolds and D. Blyth. Advanced graphics programming techniques using
OpenGL. SIGGRAPH ’98 Course Notes, ACM SIGGRAPH, 1998.

[12] J. R. Parker. Extracting vectors from raster images.Computers & Graphics,
12(1):75–79, 1988.

[13] R. Raskar and M. Cohen. Image precision silhouette edges. In1999 ACM Sym-
posium on Interactive 3D Graphics, pages 135–140. ACM SIGGRAPH, April
1999.

[14] W. T. Reeves and R. Blau. Approximate and probabilistic algorithms for shading
and rendering structured particle systems. InComputer Graphics (SIGGRAPH
’85 Proceedings), volume 19, pages 313–322, July 1985.

[15] T. Saito and T. Takahashi. Comprehensive rendering of 3-d shapes. InCom-
puter Graphics (Proc. SIGGRAPH 90), volume 24(4), pages 197–206. ACM
SIGGRAPH, 1990.

[16] M. Salisbury, M. Wong, J. F. Hughes, and D. Salesin. Orientable textures for
image-based pen-and-ink illustration. InSIGGRAPH ’97 Conference Proceed-
ings. ACM SIGGRAPH, 1997.

[17] T. T. Sasada. Drawing natural scenery by computer graphics.Computer Aided
Design, 19(4):212–218, 1987.

[18] J. Schumann, T. Strothotte, A. Raab, and S. Laser. Assessing the effect of non-
photorealistic images in computer-aided design. InACM Human Factors in Com-
puting Systems, SIGCHI ’96, pages 35–41, April 13-15 1996.

[19] A. R. Smith. Plants, fractals and formal languages.Computer Graphics (SIG-
GRAPH ’84 Proceedings), 18(3):1–10, July 1984.

[20] S. Strassmann. Hairy brushes.Computer Graphics (SIGGRAPH ’86 Proceed-
ings), 20(3):225–232, 1986.

[21] C. Strothotte and T. Strothotte.Seeing Between the Pixels: Pictures in Interactive
Systems. Springer-Verlag, Berlin-Heidelberg-New York, 1997.

[22] T. Strothotte, B. Preim, A. Raab, J. Schumann, and D. R. Forsey. How to render
frames and influence people.Computer Graphics Forum, 13(3):455–466, 1994.

[23] G. Winkenbach and D. Salesin. Computer-generated pen-and-ink illustration.
In SIGGRAPH ’94 Conference Proceedings, pages 91–100. ACM SIGGRAPH,
1994.

[24] G. Winkenbach and D. Salesin. Rendering parametric surfaces in pen and ink.
In SIGGRAPH ’96 Conference Proceedings, pages 469–476. ACM SIGGRAPH,
1996.

[25] C. I. Yessios. Computer drafting of stones, wood, plant and ground materials.
Computer Graphics (Proceedings of SIGGRAPH 79), 13(3):190–198, 1979.



Figure 6: Several trees shaded with different styles. See Section 4 for details.


