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Abstract

A surface light fieldis a function that assigns a color to each
ray originating on a surface. Surface light fields are well suited
to constructing virtual images of shiny objects under complex
lighting conditions. This paper presents a framework for construc-
tion, compression, interactive rendering, and rudimentary editing
of surface light fields of real objects. Generalizations of vector
quantization and principal component analysis are used to construct
a compressed representation of an object’s surface light field from
photographs and range scans. A new rendering algorithm achieves
interactive rendering of images from the compressed representa-
tion, incorporating view-dependent geometric level-of-detail con-
trol. The surface light field representation can also be directly edited
to yield plausible surface light fields for small changes in surface
geometry and reflectance properties.

CR Categories: I.3.2. [Computer Graphics]: Picture/Image Generation–
Digitizing and scanning, Viewing algorithms

Keywords: surface light fields, 3D photography, lumigraph, light field,
function quantization, principal function analysis, view-dependent level-of-
detail, image-based rendering, wavelets.

1 Introduction

Recent advances in digital cameras, 3D laser scanners and other
imaging technology are enabling us to capture enormous quanti-
ties of geometric and radiance data with unprecedented ease and
accuracy. These advances hold great promise for3D photography,
the process by which both the shape and appearance of physical
objects are modeled and realistically rendered. But to make 3D
photography truly practical, quite a few open problems still need
to be solved.

First, we need a good representation for those 3D datasets. The
framework described in this paper is based on thesurface light
field, a term coined by Milleret al. [22]. The surface light field
is a function that assigns an RGB value to every ray leaving every
point on a surface. When constructed from observations made of
an object, a surface light field encodes sufficient information to
construct realistic images of the object from arbitrary viewpoints.
Surface texture, rapid variation in specularity, and global effects
like interreflection and shadowing are all correctly represented.
Some of these properties can be seen in Figure 1.

However, a good representation by itself is only half the story.
Because the datasets acquired by 3D photography techniques are
so large, goodcompressionalgorithms are needed. Furthermore,
we need algorithms torender those datasets efficiently, ideally at
interactive speeds. To this end, we need to developlevel-of-detail

Figure 1 Images of a surface light field demonstrating detailed
surface texture, rapid changes in specular properties, and interreflec-
tions. The specular variations occur, for example, in the gold paint
on the tail of this porcelain fish. The tail also reflects light onto the
body, as indicated by the reddish hue on the side of the fish in the
left panel.

controlsfor the rendering process, with shape and appearance under
independent control. Finally, just as in traditional 2D photography,
accurately capturing the real world is not sufficient for many appli-
cations; a useful representation for the results of 3D photography
should also beeditable.

In this paper, we address each of these problems. In particular, our
contributions include:

Estimation/compression.Our raw data consists of a set of 2D digi-
tal color photographs of an object together with a collection of laser
range scans. To make a surface light field tractable for rendering,
the data must fit into main memory. To this end we present two new
algorithms that simultaneously estimate and compress the surface
light field. The first is a generalization of vector quantization; the
second is a generalization of principal component analysis.

Rendering. We demonstrate an algorithm that can render our
surface light fields at interactive frame rates. Evaluation of the
surface color takes time proportional to the occupied screen space.
The amount of time required to render the underlying geometry
is controlled using a new view-dependent level-of-detail algorithm
for meshes with subdivision connectivity. The level of geometric
approximation does not affect the sharpness of the surface texture.

Editing. Our representation of surface light fields allows editing,
using 3D analogs of image processing algorithms to filter reflected
light, and modifications of surface geometry. We can simulate
changes in the reflectance properties of the surface, and we can
generate plausible images of the object after it has been deformed
or moved relative to its environment.
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1.1 Related work

Surface light fields fit into the broad framework ofimage-based
rendering schemes. Image-based methods take a collection of
photographs as input, construct a representation of the surface color
or radiance, and use it to synthesize new images from arbitrary
viewpoints. The methods tend to differ in the number of input
images they use, the representation of the data, the degree to which
they incorporate geometric information about the object into the
image representation, and the compression techniques they employ.
Our own approach leverages high-resolution geometry to improve
image quality while affording a compact representation.

Levoy and Hanrahan [17] acquire many hundreds of images, which
are resampled to lie on a regular grid in a two-plane parameter-
ization. New images are computed by interpolation between ray
samples, using essentially no geometric data. They apply vector
quantization to obtain compressed representations of light fields.
Gortleret al. [12] present a similar two-plane parameterization that
they call alumigraph, in which they interpolate image samples via
a hierarchicalpush-pullalgorithm. They use approximate surface
geometry derived from photograph silhouettes (or higher-resolution
geometry in the case of synthetic data) to perform a depth correction
that substantially reduces ghosting and blurring artifacts. In both
these methods, the representation restricts the viewpoint to lie
outside of the convex hull of the object. Magnor and Girod [20, 21]
develop an MPEG-like scheme for compressing two-plane light
fields that produces better compression ratios than those obtained
by Levoy and Hanrahan. Our approach depends on both high-
resolution geometry and dense sets of images. It removes the
convex hull restriction of the two-plane light field and admits a new
form of compressed representation that can be rendered in real time.
For comparable data sizes, our representation yields sharper images
and greater compression ratios than two-plane representations.

View-dependent texture mapping[7, 8, 26] is a kind of light field
that does not require resampling the input images. This approach
uses geometric information to re-project each input image into the
desired camera viewpoint. The re-projected input images are then
blended together using weights based on the view direction primar-
ily, and possibly other factors such as sampling rate. Because the
blending in view-dependent texture mapping incorporates visibility
information, this approach supports rendering within the convex
hull of the object. In practice, view-dependent texture mapping has
been used with fewer images and surfaces that are less specular than
those demonstrated with two-plane light fields, though this is not a
fundamental limitation. As noted in Debevecet al. [8], a surface
light field can be viewed as a distillation of view-dependent texture
mapping into a more efficient representation.

Miller et al. [22] use surface light fields to render solutions to
synthetic (non-diffuse) global illumination problems. They apply
JPEG-like image compression techniques to sets of texture maps.
Their technique achieves compression rates for surface light fields
that are comparable to those of Levoy and Hanrahan’s vector quan-
tization method. Walteret al. [31] also use surface light fields to
approximate solutions to global illumination problems. Their rep-
resentation involves basis functions derived from hardware lighting
models, which provides very fast rendering, but does not support
textured surfaces, nor can it adequately model complex phenomena
such as rapidly varying specularity. In addition, problems exist
in the 3D photography realm that do not arise with synthetic
data: most importantly, neither a surface parameterization nor the
radiance along arbitrary rays are knowna priori and must instead
be constructed.

Nishinoet al. [23, 24] generate surface light fields of real objects,
though their images are relatively dense in only one rotational di-
rection. Geometric information is represented by a coarse triangular
mesh. They construct a set of texture maps for each triangle by

projecting each image onto the mesh. Compression is achieved by
performing a principal component analysis on each set of textures.
(Interestingly, the vectors in their analysis are formed by holding
a direction fixed and letting surface location vary. This is the
opposite of our analysis in Section 4.6, where, to form a vector,
we fix a surface location and let direction vary.) Their approach
successfully models objects with simple geometric structure and
smoothly varying specularity. However, it has not been demon-
strated on objects that exhibit both high geometric complexity and
rapid BRDF variation, nor does it provide real-time rendering.

Inverse renderingis an alternative to generating a surface light field.
The goal of these techniques is to estimate the surface BRDF from
images and geometric data. Previous work on inverse rendering
[28, 33] has assumed that the BRDF is piecewise linear with
respect to a coarse triangulation of the surface. Our techniques
require no such assumptions, and, of course, inverse rendering
does not solve the re-rendering problem—a non-interactive global
illumination algorithm is required to produce photorealistic results.
Recent work has extended interactive rendering techniques to a
wider range of lighting models and environments. Cabralet al. [3]
describe a technique for using radiance environment maps to render
objects under arbitrary lighting conditions and with any isotropic
BRDF. Heidrichet al. [13] use texture mapping hardware for the
same purpose but allow a different class of BRDFs. However,
these two methods do not handle global effects like shadows or
interreflection.

1.2 Overview

We have developed algorithms for acquiring light field data of real
objects, and for estimating, compressing, rendering, and editing
their surface light fields. We have tested these algorithms on two
objects, a small ceramic fish with a shiny surface and detailed
texture, and a marble elephant with more complex geometry and
less pronounced specular highlights.

The following sections describe these new algorithms in detail. We
begin by describing our representation of surface light fields (Sec-
tion 2). Next, we discuss our data acquisition process (Section 3).
We then describe our algorithms for estimating and compressing
surface light fields and compare the quality of these methods
to two-plane light fields of similar size (Section 4). Finally, we
discuss our algorithms for rendering and editing surface light fields
(Sections 5 and 6), and present ideas for future research (Section 7).

2 Representation

Roughly speaking, a surface light field is a function that associates
a color to every ray originating from a surface. Our algorithm for
constructing images from a surface light field relies on a good
parameterization of an object’s surface meshM. The methods of
either Ecket al. [9] or Leeet al. [16] yield a parameterization

ϕ : K0 → M ⊂ IR3, (1)

whose domainK0 is a triangular mesh with a small number of faces,
called abase mesh. We use a variant of the algorithm of Leeet al.
to parameterize our scanned geometry.

The parameterization allows us to represent the surface light field
as a function

L : K0 × S2 → RGB, (2)

where S2 denotes the sphere of unit vectors in IR3. Radiance is
represented by points in IR3 corresponding to RGB triples. Ifu is
a point on the base mesh and! is an outward pointing direction
at the surface pointϕ(u), then L(u,!) is the RGB value of the
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Figure 2 Representation of the surface light field. Pointsu on
the base mesh,K0, are mapped to the geometric surface,M, by
ϕ. The lumisphere,Li at the grid pointui , represents the radiance
leaving surface pointϕ(ui ). Directions are denoted by!, or e! after
reflection through the surface normaln as described in Section 4.4.

light ray starting atϕ(u) and traveling in direction!. Although
L(u,!) has no physical interpretation when! is inward pointing,
our compression, rendering, and editing techniques rely onL being
defined over the entire direction sphere.

We make the simplifying assumption thatL(u,!) is piecewise
linear in!. To make this more precise we have to define what we
mean by a piecewise-linear function onS2. It is not difficult to verify
that the map

h(!) ≡ (sin−1 ωx, sin−1 ωy, sin−1 ωz)

| sin−1 ωx| + | sin−1 ωy| + | sin−1 ωz| (3)

is a homeomorphism betweenS2 and the regular octahedron with
vertices (±1,±1,±1). We useh because it introduces less distor-
tion than radial projection and yet can be evaluated quickly using a
lookup table for sin−1.

Composition withh induces a bijection between functions on the
octahedron and functions on the sphere. We say that a function
F(!) is piecewise linearif it is piecewise linear with respect to
an s-times-subdivided octahedron,i.e., the mesh resulting froms
four-to-one subdivisions of the octahedron. We call a piecewise-
linear RGB-valued function alumisphere, and we letCs

PL denote
the vector space of all lumispheres.

With these definitions, the surface light fieldL can be represented
by a function, whose domain isK0 and whose range isCs

PL, that
sends a pointu on K0 to the lumisphereL(u, ·). This definition can
be described compactly in mathematical notation as follows:

K0 → Cs
PL : u 7→ L(u, ·) (4)

We have chosen subdivision levels = 3 in all our examples. In
this case the space of lumispheres has dimension 3× 258 = 774.
We arrived at this value experimentally. Settings = 2 results in
noticeable degradation in the image quality, whiles = 4 gives little
improvement at the expense of higher dimension.

It is useful to think of a surface light field as a lumisphere-valued
texture map, which assigns a lumisphere instead of a single color to
each texel. There is one rectangular texture map for each triangle
in K0. The K0 triangle is mapped to the lower-left corner of its
rectangle, and the upper right corner is unused. (For compactness
we store pairs of texture maps interleaved in memory.) As in
conventional texture mapping, each texture map is divided into
square texels, and these texels define a partition of each face ofK0

into cells. The surface light fieldL is thus piecewise-constant with
respect to this partition ofK0. Let ui denote the center of thei-th
cell. Cell dimensions (correspondng to the texture map resolution)

are chosen so that the imagesϕ(ui) andϕ(uj) of any two adjacent
grid pointsui anduj are separated by at most one pixel in the image
plane of each camera. We denote the lumisphere at the grid pointui

by Li—that is,Li(!) ≡ L(ui ,!).

Figure 2 illustrates key aspects of our notation.

3 Data acquisition

Acquiring the raw data to build a surface light field for a real object
requires four steps: (1) range scanning the object, (2) building a
mesh to represent its geometry, (3) capturing a collection of images
of the object, and (4) registering the images to the mesh. Because
the techniques presented in this paper do not depend on the specifics
of our acquisition process, we present only a brief summary here of
the procedure that we have used successfully.

Range scanning.We took a number of range scans of each object
using a Cyberware Model 15 scanner. Glossy objects like the fish
and elephant are not ideal candidates for laser scanning. To improve
laser returns, we coated them with a removable powder. The fish
was built from 36 scans, and the elephant from 49.

Reconstructing the geometry.The scans were registered using a
small number of hand-selected point correspondences to initialize
a global iterated closest-points algorithm [2, 10]. The registered
scans were merged into a single triangle mesh using the volumetric
method described by Curless and Levoy [6]. The final meshes
representing the surfaces of the fish and elephant contain 129,664
triangles and 311,376 triangles, respectively.

Acquiring the photographs.We used a camera attached to a spher-
ical gantry arm to capture photographs from poses spaced roughly
evenly over the sphere. The camera positions were known relative
to one another, but not relative to the objects being photographed.
We took 638 photographs of the fish and 388 photographs of
the elephant, together with photographs of a calibration pattern,
which we used to determine the intrinsic camera parameters using
Tsai’s method [30]. During acquisition, the camera and gantry arm
occasionally cast shadows onto the object. Because we wanted to
capture the object under fixed lighting conditions, we manually
removed photographs taken under those circumstances.

Registering the photographs to the geometry.We registered the
set of photographs to the reconstructed mesh with user assistance.
By hand-selecting correspondences between points on the mesh
and points on a small subset of the photographs, we generated
a list of 3D point-to-ray correspondences. We then registered
the photographs to the geometry using an iterated closest-points
algorithm.

4 Estimation and compression

Once we have acquired the raw image and geometric data, we must
estimate a surface light field that approximates that input. This
section describes three estimation techniques; the latter two directly
create compressed representations.

4.1 Assembling data lumispheres

The first step in the estimation process is the construction of a
useful intermediate representation, consisting of adata lumisphere
for each grid point in the surface light field. A data lumisphere is
a set of samples from a full lumisphere, each consisting of a color
and a direction corresponding to an observation of a grid point. We
useLi to denote the data lumisphere associated with pointui on the
base mesh. Assembling data lumispheres is a resampling problem
that we solve separately for each grid point on the base meshK0.

Consider a fixed grid pointui , and letcij denote the RGB value of
the point in thej-th photograph defined by the ray fromϕ(ui) to the
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Figure 3 Lumispheres from a point under the elephant’s trunk. (The
surface normal points directly out of the page.) The swath of missing
points were occluded by the trunk. (a) Data lumisphere. (b) Faired
piecewise-linear lumisphere. (c) Faired lumisphere with vertices
shown as constant-colored Voronoi regions (used for illustration
only).

location of thej-th camera. The valuecij is computed by bilinear
interpolation in thej-th photograph. Some or all of thecij might
be invalid because the pointϕ(ui ) may not be visible from thej-th
camera position. Ifϕ(ui) is visible, we find the direction vector!ij

from ϕ(ui) to the location of cameraj and add the pair (cij ,!ij ) to
the data lumisphereLi for grid pointui . Figure 3(a) shows the data
lumisphere for a point on our elephant.

To determine ifϕ(ui) is occluded with respect to thej-th camera, we
render, from the perspective of that camera, both the original mesh
M and additional geometry that conservatively bounds the platform
on which the object rests. (Because the platform obscures parts of
the objects in some photographs, we add geometry representing
the platform to ensure that we do not project the platform onto the
object.) The depth buffer gives us adepth image, which we compare
to the depth of each pointϕ(ui ) to determine if it is visible.

4.2 Pointwise fairing

Our first estimation algorithm,pointwise fairing, constructs a
piecewise-linear lumisphere from each data lumisphere indepen-
dently at each surface point. If the data covered the entire direction
sphere, we could estimateLi using the standard least-squares proce-
dure of settingLi to be the lumisphere inCs

PL that best approximates
the data lumisphere:

Li = argmin
F∈Cs

PL

Edist(F,Li) (5)

The argmin notation evaluates to the value of its subscript that
minimizes the expression to which it is applied. Here,F is a
lumisphere, andEdist(F,Li) measures how wellF approximatesLi :

Edist(F,Li) ≡ 1
|Li |

X

j∈visible cameras

|F(!ij ) − cij |2 (6)

where |Li | is the number of observed color values in the data
lumisphereLi .

But the physical light field at any point on the surface is only de-
fined on the hemisphere of outward pointing directions. Moreover,
due to self-occlusion and constraints on the camera poses, the data
samples often do not cover the entire direction hemisphere (see
Figure 3). The fitting problem (Equation (6)) is under-determined,
and it is therefore necessary to regularize it by adding a fairing term.
We use a discrete approximation to the thin-plate energy:

Ethin(F) ≡ Ns

4π

X

k

|∆PLF(!k)|2 . (7)

The sum ranges over the vertices of thes-times-subdivided octa-
hedron (withNs vertices, each corresponding to a direction!k),

and∆PL denotes the umbrella Laplacian [29]. The regularized error
function is then

Eλ(F,Li) ≡ Edist(F,Li) + λ Ethin(F) . (8)

We use conjugate gradients to find the lumisphereF that minimizes
Equation (8). Figures 3(b) and 3(c) show the faired lumisphere
generated from the data lumisphere in Figure 3(a). The fairing
term dampens the directional variation in the fitted lumisphere. It
has little physical significance, and our data is relatively free of
noise; we therefore chooseλ small so thatEdist dominates. Note
that our fairing procedure assigns values toL(u,!) at all directions
! ∈ S2, including directions far away from any observations, and
even directions pointing into the object.

Figure 4 illustrates the effects and the limitations of pointwise
fairing. Figure 4(a) shows one of the actual photographs of the fish,
and Figure 4(b) shows the same view of the uncompressed light
field generated from all the photographs. The light field rendered in
Figure 4(c) was generated after all photographs from viewpoints
inside a cone of radius 10◦ about the viewing direction were
removed. There is little degradation. In Figure 4(d) the radius of
the cone was increased to 20◦. Clearly the gap in directions has
become too large for pointwise fairing to accurately approximate
the actual surface light field.

4.3 Compression overview

BecauseCs
PL is a high-dimensional space, a complete pointwise-

faired surface light field may be very large. To generate a more
compact surface light field, we will represent each lumisphere as
a weighted sum of a small number of prototype lumispheres using
two distinct methods, one analogous to vector quantization, and the
other analagous to principal component analysis. Each lumisphere
Li can then be replaced by an index (as in vector quantization) or
a set of coefficients (as in principal component analysis) indicating
contributions from the prototypes.

A naive application of vector quantization or principal component
analysis might treat as input the pointwise-faired lumispheres
viewed as vectors in the spaceCs

PL. Observe, however, that the
RGB values for at least half of each lumisphere—corresponding
to directions pointing into the object—are mostly fiction generated
by the fairing process. If we were to apply vector quantization or
principal component analysis to the pointwise-faired lumispheres,
these fabricated values would have the same influence as values in
directions where we actually have data. This is clearly undesirable.

A more principled compression approach would use only observed
data. The data, however, is an irregular and incomplete sampling
of each lumisphere. We have therefore developed two new esti-
mation/compression methods,function quantizationandprincipal
function analysis, which are similar in spirit to vector quantization
and principal component analysis, but are driven by irregularly
spaced data and avoid the intermediate pointwise-fairing step.

Before discussing our compression algorithms, we present two
transformations of the surface light field that increase spatial coher-
ence among lumispheres, thereby making them more compressible.

4.4 Median removal and reflection

The first transformation ismedian removal. Let mi denote the RGB
value obtained by computing the median color of data lumisphere
Li (separately for each color channel). We use the median rather
than the mean because it is robust against outliers and more
accurately represents the bulk of the data. The collection of median
values can be viewed as a texture map over the surface, roughly
encoding the diffuse component of the surface light field. We store
this “diffuse” texture map separately and then encode the residual



(a) (b) (c) (d) (e)

Figure 4 Analysis of estimation with missing data. (a) Photograph taken by a selected camera. (b) Faired surface light field using all
photographs. (c) Faired surface light field after first removing from the input data all photographs in a cone of radius 10◦ about the direction
shown. (d) Faired surface light field with a cone of radius 20◦ removed. (e) Compressed surface light field with principal function analysis of
order 3 after first removing the same cone of radius 20◦. Note that the compressed surface light field reproduces the specularity of the input
better than the pointwise-faired version when a significant portion of the input data is removed.

(a) (b) (c)

Figure 5 Increasing lumisphere coherence via reflection reparam-
eterization. (a) Surface light field. (b) Transect ofL(u,!). (c)
Transect ofeL(u, e!). Horizontal axis shows position ofu along white
line across fish (a). Vertical axis shows position of! (b) or e! (c) on
a user-selected great circle. Note that in the right panel the specular
highlights are much better aligned.

surface light field after subtracting the diffuse component. This
serves two purposes. First, if we compress only the residual surface
light field, any diffuse texture will be exactly preserved. Second,
the residual will be more compressible if the specular behavior of
the surface is simpler than the diffuse (e.g.,an object with diffuse
texture and a glossy coat.) Median removal before compression is
analogous to mean-removed vector quantization [11].

The second transformation,reflection, is a reparametrization of the
lumispheres. Letn be the unit surface normal at a surface. Then for
a direction! ∈ S2, let e! be the reflection of! about the normaln
(transformed quantities will always be denoted with a tilde ‘e ’):

e! ≡ 2 (n · !) n − !. (9)

Similarly, the reflected (and median-removed) surface light fieldeL
is defined at each grid point by:

eLi(e!) ≡ Li(!) − mi . (10)

Where, by Equation (9),! is e! reflected around the surface normal,
ni , at thei-th grid point. Obviously,eL (plus the diffuse texture map)
contains the same information asL. To see why we expect the
reflected reparameterization to increase spatial coherence, consider
the three elements that determine the lumisphereLi at a point:
the incoming radiance, the BRDF and the normal. First, assume
that the incoming radiance at two pointsui and uj is the same;
this is approximately true for points that are nearby relative to
the sources of light illuminating them. Second, assume that the
BRDF is reflective. Areflective BRDF[3] is one that reflects the
incoming radiance through the surface normal and then convolves
with a “direction-invariant” filter (i.e.,a space-invariant filter, where
space is restricted to the surface of the sphere of directionsS2). As
observed by Rusinkiewicz [27], many BRDFs are approximately
reflective. If these two assumptions hold, the reflected lumispheres

eLi andeLj will be the same even if the normalsni andnj are different.
For an example, consider the case of a perfect mirror surface and an
environment that is infinitely far away. Ignoring non-local effects
such as occlusions and interreflections, all of the reparametrized
lumispheres will agree on their overlap because they contain parts
of the same environment map. If the surface had some roughness,
then the lumispheres would be blurred, reflected images of the
environment, but they would still roughly agree on the overlap.
Figure 5 illustrates the effect of reparameterization for the fish,
whose environment consists of several small light sources.

We always estimate and store median-removed and reflected lu-
mispheres; however, the transformations have no effect on the
pointwise-fairing algorithm.

4.5 Function quantization

Function quantizationis a generalization of vector quantization
to the case of irregularly sampled data. The goal is to construct
a codebookcomprised of a collection of prototype lumispheres
(codewords) {P0, . . . , Pn} and a map assigning to each grid point
ui ∈ K0 a codeword indexki , and thereby a codewordPki . For
a givenn, the codebook and map should minimize the combined
energy over all data lumispheres,i.e.,

P
i Eλ(Pki , eLi). This formu-

lation is different from vector quantization in that the inputs (data
lumispheres) are not vectors.

Function quantization starts with an initial codebook consisting of
a single lumisphere and a smalltraining setof randomly selected
grid points. It proceeds by alternating betweencodebook fittingand
codeword splitting, until the codebook reaches a user-specified size.

Codebook fitting is accomplished via Lloyd iteration [11],i.e., by
repeatedly applying the following two steps:

1. Projection: For each grid pointui in the training set, find the
indexki of the closest codeword:

ki = argmin
k

Eλ(Pk, eLi). (11)

This partitions the training set into clusters of grid points that
project to the same codeword.

2. Optimization:For each cluster, find the best piecewise-linear
lumisphere:

Pk = argmin
F∈Cs

PL

X

i∈clusterk

Eλ(F, eLi) , (12)

where the summation is over all of the data lumisphereseLi in
thek-th cluster.

We perform the optimization steps using conjugate gradients. The
iteration terminates when the decrease in error between succes-
sive codebooks falls below a user-defined threshold. Then, if the
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Figure 6 Comparison of different estimation techniques applied to the fish. (a) Pointwise faired surface light field. (b) Function quantization
with 1024 codewords. (c) Principal function analysis with subspace dimension 2. (d) Principal function analysis with subspace dimension 5.

Figure 7 Comparison of compressed elephant surface light field
with input photographs. Left: Elephant photographs. Right: Ele-
phant surface light field (5.3 megabytes encoded with principal
function analysis, subspace dimensionq = 2). Note that the image
on the bottom right shows a part of the elephant that was occluded
in the corresponding photograph. Also note that some points on the
very bottom of the elephant were not seen by any camera (using our
conservative approximation of the platform) and are black.

codebook is smaller than desired, codeword splitting doubles the
codebook size by cloning each codeword and adding a small
perturbation to the clone. After a codebook of the desired size has
been found, codewords are assigned to all grid points by projecting
all the corresponding data lumispheres (not just those in the training
sample) onto the codebook.

4.6 Principal function analysis

Principal function analysis, based on principal component analysis,
is an alternative to function quantization. For a given set of data
vectors and a given approximation dimensionq, principal com-

ponent analysis finds theq-dimensional affine subspace that best
approximates the data vectors in the least squares sense. As in the
case of function quantization, we must generalize this approach to
the case of irregularly sampled data.

Our goal, then, is to find theq-dimensional subspaceV ⊂ Cs
PL

that best approximates all of the data lumispheres in the training
set. Each lumisphereeLi is represented by the pointF ∈ V that
minimizes Eλ(F, eLi). We call F the projection of eLi onto V, or
πV( eLi). OverloadingEλ, we view it as a function ofq-dimensional
subspaces ofCs

PL; it measures how well a subspace approximates
the data lumispheres in the training set,i.e.,

Eλ(V) ≡ 1
T

X

i

Eλ(πV( eLi), eLi) . (13)

The summation is over all grid point indices in the training set, and
T is the size of the training set.

While principal component analysis reduces to an eigenvalue prob-
lem, we have not succeeded in finding a corresponding formulation
for minimizing the functional defined in equation (13). We have
therefore taken a different approach.

Eachq-dimensional affine subspace ofCs
PL can be expressed as the

affine span ofq + 1 prototype functions, andEλ can be regarded as
a functional on the space of (q + 1)-tuples of prototypes. SinceEλ

depends only on the affine span of the prototypes, minimizingEλ

will not uniquely determine the prototypes.

To address the uniqueness problem, we consider a new functional:

Eλ,µ(P0, . . . ,Pq) ≡ Eλ(V) + µ
X

k∈0,...,q

‖Pk − Pmean‖2 (14)

whereP0, . . . ,Pq are the prototypes definingV, andPmean is their
mean, and where the projectionπV( eLi) of a data lumisphereeLi

is restricted to lie inside the convex hull of the prototypes. (The
squared norm of a lumisphere,‖F‖2, is the sum of the squared
norms of the vertex values divided by the number of vertices.) This
additional spring energy term penalizes widely-spaced prototypes.
Minimizing it is a non-linear optimization problem, which we solve
via conjugate gradients. After the subspace has been determined by
selection of the prototypes, we assign barycentric coordinates to all
grid points by projecting all corresponding data lumispheres (again,
not just those in the training sample) onto the subspace.



(a) (b) (d) (e)

Figure 8 Comparison of a surface
light field with a geometry-corrected
two-plane light field. (a) Photograph.
(b) Surface light field pointwise faired
(180 MB). (c) Two-plane light field un-
compressed (180 MB).

(d) Surface light field compressed us-
ing principal function analysis of di-
mension 5 (2.5 MB). (e) Surface light
field compressed using function quanti-
zation with 1024 codewords (2.7 MB).
(f) Two-plane light field compressed
using vector quantization with 16384
codewords (8.1 MB).

(c) (f)

4.7 Compression results

We tested the various estimation and compression algorithms on the
surface light fields of both the fish and elephant. Figure 6 compares
results of the different methods. Figure 6(a) shows two views of the
uncompressed (pointwise-faired) fish, the entire model (top) and
a closeup of the tail fin (bottom). This data set contains 176 MB
of color data, plus 0.7 MB for geometry and normals. Figure 6(b)
demonstrates function quantization with 1024 codewords, resulting
in a color data size of 2.7 MB. Figures 6(c) and (d) illustrate
principal function analysis with subspace dimensions 2 and 5,
resulting in color data sizes of 1.7 MB and 2.3 MB, respectively.
Note that the 2-dimensional principal function analysis example,
with its total file size of 2.4 MB (1.7 MB color + 0.7 MB geometry),
results in more than 70:1 compression.

Overall, principal function analysis leads to smoother images than
function quantization; function quantization introduces artifacts
such as jagged edges on the fish’s tail. However, function quantiza-
tion is more accurate, better preserving the color of highlights and
effects such as interreflections that are lost during principal function
analysis.

Not surprisingly, increasing the dimension of the subspace in
principal function analysis improves the quality of the results;e.g.,
dimension 5 produces highlights substantially sharper and brighter
than dimension 2. Rendering time, however, is asymptotically
linear in the dimensionq. Currently, other costs dominate when the
dimension is low, and in our examples, dimensions 2 and 5 can
be rendered at roughly the same speed. By contrast, the rendering
time for a function-quantized surface light field is independent of
codebook size (ignoring the effect of the memory hierarchy). The
complementary strengths of function quantization and principal
function analysis suggest a hybrid approach (see Section 7).

We achieved similar compression results with the elephant. A
pointwise-faired elephant requires 409 MB of color data and
1.6 MB of geometric data. Applying principal function analysis
with a 2-dimensional subspace compresses the elephant’s color data
to 3.7 MB.

Figure 7 compares synthesized images of the elephant with the
photographs. The compressed surface light field captures most of
the features of the input data, but the highlights are less bright. In

addition to the lower dimension of the subspace, the lower fidelity
may be a result of the fact that the scanned geometry of the elephant
appeared to be of lower quality than that of the fish. Errors in the
geometry, particularly the normals, adversely affect the quality of
the compression. Note also that, even though the bottom reconstruc-
tion includes the feet of the elephant, which were not visible in the
corresponding photograph, our compression algorithm succeeds in
inferring plausible shading and highlights for that part of the model.
The compressed representation is essentially a learned model of
lumispheres; the unseen portions of data lumispheres are filled in
by finding the closest lumisphere in the model. Figures 4(d) and
(e) also show that principal function analysis can produce more
realistic highlights than pointwise fairing given incomplete data
lumispheres.

We have done an informal comparison of image quality between
a surface light field and a two-plane light field. We constructed
a two-plane light field of the fish with six slabs arranged along
the faces of a cube. The resolution of the light field, 4002 for the
far plane and 82 for the near plane, was chosen to approximately
match the corresponding resolutions of the surface light field: the
far-plane resolution matches the input photograph resolution, and
the near-plane resolution approximately matches the surface light
field’s directional resolution. The resulting raw data size is about
180 MB, the same size as our pointwise-faired (i.e.,uncompressed)
surface light field. The input images were resampled into the two-
plane parameterization offline using the scanned fish geometry and
view-dependent texture mapping. We then compressed the data
using the vector quantization technique (and software) of Levoy and
Hanrahan [17], using their default settings: a codebook of 16384
2×2×2×2×3 codewords (i.e., 2×2 camera positions, 2×2 image
pixels and 3 color channels). All of the renderings of two-plane light
fields use the geometry correction technique of Gortleret al. [12].

Figure 8 compares images generated from uncompressed and com-
pressed surface light fields with corresponding images generated
from the two-plane light field. The uncompressed data sets give
reproductions of similar quality, although the two-plane light field’s
quadralinear interpolation has different filtering characteristics.
When compressed, the surface light field produces more compelling
reproductions even though the compressed two-plane light field
data (8.1 MB + geometry) is more than 3 times the size of the
compressed surface light field (2.5 MB + geometry).



False color Light field
Model Faces (secs/frame) (secs/frame)

top uniform 102,400 0.36 0.59
bottom LOD 5823 0.07 0.31

Figure 9 View-dependent level-of-detail. Left: Geometry visualiza-
tion. Right: Surface light field. Top: Uniform subdivision,r = 4.
Bottom: View-dependent level-of-detail with error terms chosen to
match the uniform subdivision. Shown in the table, very bottom,
are rendering times, first for false color only (the step that uses
geometry), and second for the entire surface light field rendering
algorithm.

The near-plane resolution of the two-plane light field we con-
structed, though comparable in angular resolution to our surface
light field, is lower than those demonstrated by Gortleret al.
and Levoy and Hanrahan. We have observed that lowering this
resolution results in artifacts such as erroneous interpolation among
rays that strike quite different surface points due to occlusion.
Azuma [1] discusses this effect and other difficulties inherent in
reduction of the near-plane resolution.

5 Rendering

In this section we present an interactive surface light rendering al-
gorithm. Our implementation runs entirely in software and achieves
interactive rates on PC-class hardware without 3D acceleration.

5.1 Basic algorithm

Rendering a surface light field from an arbitrary viewpoint is
conceptually straightforward. Each pixel in the image plane of the
camera defines an incoming ray in some direction!. Suppose the
ray intersects the mesh at a pointϕ(ui), corresponding to a point
ui ∈ K0. Then the RGB value of the pixel isL(ui ,!). Since we
actually encode the reparameterized surface light fieldeL(ui , e!) at
each point, we must reflect the viewing ray about the normal before
looking up the RGB value. To facilitate this process, we compute
and store anormal mapn(u) over the surface, so that we can quickly
determine the normaln(ui ) at a grid point.

We render the surface light field in two passes. In the first pass
we determine, for each pixel of the virtual camera, the pointui

corresponding to the surface pointϕ(ui) seen at that pixel, encoded
as a face ID and barycentric coordinates. We do this efficiently by
rendering the mesh in false color with Gouraud shading, using two
of the framebuffer’s four color channels to encode the index of the
base mesh face, and the remaining two to encode the barycentric
coordinates within the face.

In the second pass, we scan the frame buffer. For each pixel in
the virtual camera we incrementally compute the direction! of
the incoming (viewing) ray using a single 3-vector addition at each
pixel. We computee! by reflecting through the surface normaln(ui)
atϕ(ui ). Finally, we evaluateeL(ui , e!) by looking up the lumisphere
associated withui and evaluating the piecewise-linear function in
direction space. These operations can be done quickly with just a
few floating-point operations.

5.2 View-dependent refinement of geometry

One feature of the surface light field representation is the de-
coupling of the surface geometry from the light field. For best
results, we can render the surface geometry at the highest resolution
during the first pass of the rendering algorithm, but this can be
costly. Alternatively, we can render a simplified mesh (e.g., the
embedding of the base mesh triangles in IR3) and still achieve a
compelling result because surface light fields, like bump-mapped
lighting, suggest more geometric detail than is actually present.
However, this simplified mesh introduces some distortion; more-
over, the coarse silhouettes are often objectionable. Instead, we
have explored a middle ground between those two extremes:view-
dependent refinementof the subdivision-connectivity surface mesh.

Most current methods for real-time, view-dependent simplification
of geometry, such as those presented by Hoppe [15] and Xia
and Varshney [32], employ progressive mesh representations and
adapt the level of detail using edge collapses and vertex splits.
For a texture-mapped surface, however, these operations can cause
considerable parametric distortion, especially near the boundaries
of parameter domains, placing significant constraints on the simpli-
fication [5]. Therefore, we restrict the mesh used for rendering to
have four-to-one subdivision connectivity [18], and refine the mesh
by adding and removing lazy wavelets [4]. This allows us to modify
the geometric detail almost independently of the parameterization.

We approximate the mapϕ : K0 → M ⊂ IR3 by a piecewise-
linear mapϕr : Kr → IR3 on the simplicial complexKr obtained
by applying r four-to-one subdivisions to the base complexK0

and settingϕr (v) = ϕ(v) for each vertexv of Kr . The subdivision
level r is a user-defined parameter (r = 4 in Figure 9). We then
compute the lazy-wavelet expansion ofϕr , expressing it as a sum
of hat functions. Adapting the mesh can now be formulated as
finding a partial sum of those hat functions, satisfying a set of view-
dependent properties.

(b)(a) wavelet
addition

wavelet
subtraction

Figure 10 (a) Lazy wavelet addition and subtraction. The support
of the added hat function is shown in blue. (b) T-vertices (circled in
red) are eliminated by adding edges.

The retriangulation procedure is an incremental algorithm that ex-
ploits frame-to-frame coherence, similar to algorithms described by
Hoppe [15] and Xia and Varshney [32]. To compute the approxima-
tion for a frame, we begin with the approximation computed for the
previous frame and modify it by applying thelazy-wavelet addition
andlazy-wavelet subtractionoperations, illustrated in Figure 10(a),
according to view-dependent criteria. To reduce the appearance of
“popping,” we spread the visual effect of each operation over time
by geomorphing [14]. In a second quick pass over the mesh, we
add temporary edges to eliminate cracks caused by “T-vertices,” as
shown in Figure 10(b).



Our criteria for wavelet addition and subtraction are the same
three view-dependent refinement criteria described by Hoppe [15]:
(1) removing wavelets that are completely backfacing, (2) removing
wavelets lying completely outside the view frustum, and (3) main-
taining a screen-space error bound. To accelerate computation of
screen-space error, we construct, in preprocessing, a bounding
volume around the set of geometric error vectors associated with
a wavelet addition. We have found that an ellipsoid aligned to
the surface normal generally provides a tighter bound than the
shape used by Hoppe, while not adding significantly to the cost
of projecting the error volume. Because coarse silhouettes tend
to be more noticeable than interior distortion, we use a smaller
error tolerance near the silhouette [19]. Finally, to reduce the
number of wavelet addition and subtraction operations that must
be considered, we enforce one additional property: A hat function
at level` ≤ r, centered at an edge ofK`−1, may appear in the sum
only if the hat functions centered at the endpoints of the edge appear
in the sum.

The results of view-dependent level-of-detail are illustrated in Fig-
ure 9, showing a close-up of the elephant’s trunk. While achieving
high accuracy, the top renderings using uniform subdivision render
fairly slowly due to the large number of triangles. The bottom
renderings, using the view-dependent level-of-detail algorithm with
error threshholds set to match the fine geometry renderings, are
obtained with far fewer triangles yielding moderately improved
frame rates with little visual difference.

The close-up views shown in Figure 9 benefit greatly from the view
frustum test, which causes a considerable fraction of the model to
be coarsened. In the other common case, where the entire model
is visible, using view-dependent level-of-detail does not give as
significant of a performance benefit, but it does no worse than a
static model. Of course, if the model is very distant, the level-of-
detail algorithm will generate a very coarse approximation.

6 Editing

Just as the decoupling of surface geometry and the light field allows
us to refine the geometry independently, we are now able to perform
editing operations that are not commonly possible in an image-
based rendering context. In this section we describe three such
operations: lumisphere editing, rotating the object relative to its
environment, and deforming the geometry.

By performing simple image processing directly on the lumi-
spheres, we can simulate changes in surface properties, such as
sharpening of specular highlights. We demonstrate this particular
operation in Figures 11(a) and (b), where the highlights in the
original rendering (a) have been brightened and sharpened (b). We
achieve this effect by applying Perlin’s bias function [25] to the val-
ues of every lumisphere. For compressed surface light fields, we can
quickly approximate this by adjusting the prototype lumispheres.
(For principal function analysis, this is only an approximation
because the bias function is non-linear.)

The other two editing operations we illustrate, rotation of geometry
relative to its environment and general deformation, fit into one
conceptual framework: a transformation is applied to define a
new surface. The new surface can be represented by a modified
embedding of the base meshϕ′ : K0 → IR3. (Rotation is just a
special case of general deformation.)

Our goal then is to compute the corresponding surface light field
L′(u,!), and our solution is operationally very simple. We compute
the new surface normal fieldn′(u) and then setL′(u,!) = eL(u, e!′),
wheree!′ is the reflection of! through the new normal.

Figures 11 and 12 demonstrate the geometric edits. Figure 11(a)
shows the original elephant; (c) and (d) show the elephant rotated

(a) (b)

(c) (d)

Figure 11 Editing operations applied to the elephant. (a) Original
elephant. (b) Sharper and brighter highlights. (c) Environment ro-
tated. (d) Environment rotated to another position.

Figure 12 A volumetric deformation applied to the fish. (Original on left.)

relative to its environment. Figure 12(a) shows the fish as it was
originally; Figure 12(b) shows it after deformation, with its head
bent to the side.

Our method for computing the new surface light fieldL′ from
the originalL is justified if the environment is infinitely far away,
if there is no occlusion, shadowing or interreflection, and if the
BRDFs for all surface points are reflective. These are the same
assumptions that motivate our reflection transformation described
in Section 4.4. Even if all of these requirements are met, there is
an additional problem. For any grid pointui ∈ K0, the camera
directions represented in the data lumisphere fall inside a hemi-
sphere. After editing, however, there will in general be viewing
directions that require values ofL′(ui ,!) for directions outside this
hemisphere. In fact, if we rotate the object by 180 degrees, we
will need values exactly on the opposite hemisphere. Operationally,
however, inferring these values is not a problem. The estimation
techniques guarantee that lumispheres are well-defined everywhere,
albeit not necessarily realistic.

7 Future work

We envision a number of areas for future work:

Combining function quantization and principal function analy-
sis. Our two compression methods can be considered extrema of
a spectrum: Function quantization fits the data by a collection of
0-dimensional spaces, whereas principal function analysis uses a



single higher-dimensional space. We could do both: fit a collection
of higher dimensional spaces. That approach might work well if
the data lumispheres lie on a low-dimensional curved manifold in
lumisphere space.

Wavelet representation of a surface light field.Constructing a
wavelet expansion of the surface light fieldL(u,!) might re-
sult in better compression than function quantization or principal
function analysis, and would support progressive transmission and
performance-tuned rendering [4].

Hole filling using texture synthesis.We have no method for
assigning lumispheres to surface points not visible in any of the
cameras, like those on the bottom of the elephant in Figure 7.
A texture synthesis algorithm, suitably extended to operate on
lumispheres instead of colors and with textures defined on general
surfaces instead of the plane, could be used to fill these holes.
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