

s.

Ŵ Background Expected Both Courses Proficiency in C/C++ or strong proficiency in Java and ability to learn Strongly recommended: matrix theory or linear algebra (e.g., Math 551) At least 120 hours for semester (up to 150 depending on term project) Textbook: 3D Game Engine Design, Second Edition (2006), Eberly Angel's OpenGL: A Primer recommended CIS 636 Introduction to Computer Graphics Fresh background in precalculus: Algebra 1-2, Analytic Geometry Linear algebra basics: matrices, linear bases, vector spaces * Watch background lectures <u>CIS 736 Computer Graphics</u> * Recommended: first course in graphics (background lectures as needed) OpenGL experience helps Read up on shaders and shading languages Watch advanced topics lectures; see list before choosing project topic

- Guidelines for paper reviews Week 6
- Preparing term project presentations, CG demos Weeks 11-12

Preparing term project presentations, CG demos - Weeks 11-12

Guidelines for paper reviews - Week 6

Lecture	Topic	Primary Source(s)
0	Course Overview	Chapter 1, Eberly 2°
1	CG Basics: Transformation Matrices: Lab 0	Sections (§) 2.1, 2.2
2	Viewing 1: Overview, Projections	\$223-224,28
3	Viewing 2: Viewing Transformation	§ 2.3 esp. 2.3.4; FVFH slides
4	Lab 1a: Flash & OpenGL Basics	Ch. 2, 16 ¹ , Angel Primer
5	Viewing 3: Graphics Pipeline	§ 2.3 esp. 2.3.7; 2.6, 2.7
6	Scan Conversion 1: Lines, Midpoint Algorithm	§ 2.5.1, 3.1; FVFH slides
7	Viewing 4: Clipping & Culling; Lab 1b	§ 2.3.5, 2.4, 3.1.3
8	Scan Conversion 2: Polygons, Clipping Intro	§ 2.4, 2.5 esp. 2.5.4, 3.1.6
9	Surface Detail 1: Illumination & Shading	§ 2.5, 2.6.1-2.6.2, 4.3.2, 20.
10	Lab 2a: Direct3D / DirectX Intro	§ 2.7, Direct3D handout
11	Surface Detail 2: Textures; OpenGL Shading	§ 2.6.3, 20.3 - 20.4, Primer
12	Surface Detail 3: Mappings; OpenGL Textures	§ 20.5 - 20.13
13	Surface Detail 4: Pixel/Vertex Shad.; Lab 2b	§ 3.1
14	Surface Detail 5: Direct3D Shading; OGLSL	§ 3.2 – 3.4, Direct3D handout
15	Demos 1: CGA, Fun; Scene Graphs: State	§ 4.1 – 4.3, CGA handout
16	Lab 3a: Shading & Transparency	§ 2.6, 20.1, Primer
17	Animation 1: Basics, Keyframes; HW/Exam	§ 5.1 - 5.2
	Exam 1 review; Hour Exam 1 (evening)	Chapters 1 – 4, 20
18	Scene Graphs: Rendering; Lab 3b: Shader	§ 4.4 - 4.7
19	Demos 2: SFX; Skinning, Morphing	§ 5.3 - 5.5, CGA handout
20	Demos 3: Surfaces; B-reps/Volume Graphics	§ 10.4, 12.7, Mesh handout

