Advanced Computer Graphics: Course Organization and Survey

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course page:
Course web site: http://www.kddresearch.org/Courses/CIS736
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:
Syllabus and Introductory Handouts
CIS 736 students: Advanced CG Topics 1 slides
Chapter 1, Eberly (2006) 3D Game Engine Design, 2nd

Course Overview

- Graphics Systems and Techniques
 - Main emphasis: shaders, lighting, mappings (textures, etc.) in OpenGL
 - Photorealistic rendering and animation (Maya 2011, Blender; Ogre3D)
 - 2-D, 3-D models: curves, surfaces, visible surface identification, illumination
 - Special topics: global illumination (ray tracing, radiosity), particle systems,
 fractals, scientific visualization (sciviz) and information visualization (infoviz)
- Operations
 - Surface modeling, mapping
 - Pipelines for display, transformation, illumination, animation
- Computer Graphics (CG): Duality with Computer Vision
- Visualization and User Interfaces
- Applications
 - CAD/CAM/CAE: object transformations, surface/solid modeling, animation
 - Entertainment: 3-D games, photorealistic animation, etc.
 - Analysis: info visualization, decision support, intelligent displays
Advanced CG Syllabus, Part 1 of 2

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Primary Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Course Overview</td>
<td>Chapter 1, Eberly 2*</td>
</tr>
<tr>
<td>1</td>
<td>CG Refresher: Transformations; Lab 0</td>
<td>Sections (§) 2.1, 2.2</td>
</tr>
<tr>
<td>2</td>
<td>Viewing 1: Linear and Affine Transformations</td>
<td>§ 2.3 – 2.4, 2.8</td>
</tr>
<tr>
<td>3</td>
<td>Viewing 2: Parametric Equations</td>
<td>§ 2.9 esp. 2.34; FVH slides</td>
</tr>
<tr>
<td>4</td>
<td>Lab 1a: 3D Refresher; Flash, GL, Direct3D</td>
<td>Chapters 2, 10, Angel Primer</td>
</tr>
<tr>
<td>5</td>
<td>Viewing 3: Scene Graphs; State, MVT</td>
<td>§ 2.3, 2.4, 2.7, 3.1 – 4.3</td>
</tr>
<tr>
<td>6</td>
<td>Scan Conversion 1: Lines & Antialiasing</td>
<td>§ 2.5.1, 3.1, FVH slides</td>
</tr>
<tr>
<td>7</td>
<td>Viewing 4: Clipping, Culling, OBBs; Lab 1b</td>
<td>§ 2.3.5, 2.4, 3.1, 3.16</td>
</tr>
<tr>
<td>8</td>
<td>Scan Conversion 2: Polygons, Clipping Intro</td>
<td>§ 2.4, 2.5 esp. 2.5.4, 2.3.16</td>
</tr>
<tr>
<td>9</td>
<td>Surface Detail 1: Phong Illumination</td>
<td>§ 2.5, 2.6, 2.6.1 – 2.6.2, 4.3, 4.3.2, 20.2</td>
</tr>
<tr>
<td>10</td>
<td>Lab 2a: Direct3D / Direct3 Intro</td>
<td>§ 2.7, Direct3D handout</td>
</tr>
<tr>
<td>11</td>
<td>Surface Detail 2: OGLSL, Many Mappings</td>
<td>§ 2.6.3, 20.3 – 20.4, Primer</td>
</tr>
<tr>
<td>12</td>
<td>Surface Detail 3: Advanced Texture Mapping</td>
<td>§ 20.5 – 20.13</td>
</tr>
<tr>
<td>13</td>
<td>Surface Detail 4: Pixel/Vertex Shad.; Lab 2b</td>
<td>§ 3.1</td>
</tr>
<tr>
<td>14</td>
<td>Surface Detail 5: Writing Shaders, RenderMan</td>
<td>§ 3.2 – 3.4, Direct3D handout</td>
</tr>
<tr>
<td>15</td>
<td>Demos 1: CGA, Scene Graphs; Traversal</td>
<td>§ 4.4 – 4.7, CGA handout</td>
</tr>
<tr>
<td>16</td>
<td>Lab 3a: Alpha in Flash vs. GL, Direct3D</td>
<td>§ 2.6, 20.1, Primer</td>
</tr>
<tr>
<td>17</td>
<td>Animation 1: Keyframes, Interpolation</td>
<td>§ 5.1 – 5.2, OGLSL handout</td>
</tr>
<tr>
<td>18</td>
<td>Exam 1 review; Hour Exam 1 (evening)</td>
<td>Chapters 1 – 4, 16, 20</td>
</tr>
<tr>
<td>19</td>
<td>Scene Graphs: Rendering; Lab 3b: OGLSL</td>
<td>§ 11.1, mesh handout</td>
</tr>
<tr>
<td>20</td>
<td>Demos 2: SPX, Inverse Kinematics</td>
<td>§ 5.3 – 5.4, CGA handout</td>
</tr>
</tbody>
</table>

*Lightly shaded entries denote the due date of a written problem set, heavily shaded entries, that of a machine problem programming assignment. Blue shaded entries, that of a paper review, and the green shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Advanced CG Syllabus, Part 2 of 2

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Primary Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Lab 4a: Animation Basics; Maya Modeling</td>
<td>Flash animation handout</td>
</tr>
<tr>
<td>22</td>
<td>Animation 2: Euler Angles vs. Quaternions</td>
<td>Chapter 17, esp. §17.1 – 17.2</td>
</tr>
<tr>
<td>23</td>
<td>Demos 4: Modeling & Simulation; Smoothness</td>
<td>Chapter 10, 13, §17.3 – 17.5</td>
</tr>
<tr>
<td>24</td>
<td>Collisions 1: capsules/lozenges, Lab 4b</td>
<td>§2.4.3, 8.1, OGL handout</td>
</tr>
<tr>
<td>25</td>
<td>Spatial Sorting: BSP and Portals</td>
<td>Chapter 6, esp. 6.1</td>
</tr>
<tr>
<td>26</td>
<td>Demos 5: More CGA: Picking Modes</td>
<td>Chapter 7, § 8.4</td>
</tr>
<tr>
<td>27</td>
<td>Lab 5a: Picking in OpenGL, Flash</td>
<td>§ 8.3 – 8.4.1, 5.0, 5.6, 9.1</td>
</tr>
<tr>
<td>28</td>
<td>Collisions 2: Dynamic, Particle Systems</td>
<td>§ 9.1, particle system handout</td>
</tr>
<tr>
<td>29</td>
<td>Exam 2 review; Hour Exam 2 (evening)</td>
<td>Chapters 5 – 6, 7.1 – 8, 12, 17</td>
</tr>
<tr>
<td>30</td>
<td>Lab 5b: Advanced Particle Systems</td>
<td>Particle system handout</td>
</tr>
<tr>
<td>31</td>
<td>Animation 3: Control & IK, PBM</td>
<td>§ 5.3, CGA handout</td>
</tr>
<tr>
<td>32</td>
<td>Ray Tracing 1: intersections, recursion, trees</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>33</td>
<td>Ray Tracing 2: refraction, supersampling</td>
<td>Chapter 15, RT handout</td>
</tr>
<tr>
<td>34</td>
<td>Visualization 1: Graphical Integrity, Data-ink</td>
<td>Tufte handout (1)</td>
</tr>
<tr>
<td>35</td>
<td>Lab 6b: More Ray Tracing</td>
<td>RT handout</td>
</tr>
<tr>
<td>36</td>
<td>Visualization 2: Small Multiples, Macro/ Micro</td>
<td>Tufte handout (2 & 4)</td>
</tr>
<tr>
<td>37</td>
<td>Fractals & ICM; Term Project Prep</td>
<td>Color handout</td>
</tr>
<tr>
<td>38</td>
<td>Lab 7: Fractals & Terrain Generation</td>
<td>Fractals/Terrain handout</td>
</tr>
<tr>
<td>39</td>
<td>Visualization 3: Confections, HIC, Review 1</td>
<td>Tufte handout (1)</td>
</tr>
<tr>
<td>40</td>
<td>Term project presentations 1; Review 2</td>
<td>–</td>
</tr>
<tr>
<td>41</td>
<td>Term project presentations 2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
<td>Ch. 1 – 8, 10 – 15, 17, 20</td>
</tr>
</tbody>
</table>

*Lightly shaded entries denote the due date of a written problem set, heavily shaded entries, that of a machine problem programming assignment. Blue shaded entries, that of a paper review, and the green shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
Online Recorded Lectures
for CIS 736 (Computer Graphics)

- **Project Topics for CIS 736**
- **Advanced Topics in Computer Graphics (10)**
 - 1. Filters for Texturing – Week 2
 - 2. Level-of-Detail Algorithms and Terrain – Week 3
 - 3. More Mappings – Week 6
 - 4. More on Animation – Week 8
 - 5. Character Modeling and IK – Week 9
 - 6. Global Illumination: Photon Maps (Radiosity) – Week 10
 - 7. Advanced Lighting Models – Week 11
 - 8. Advanced Ray-Tracing – Week 12
 - 9. More on Scientific, Data, Info Visualization – Week 13
 - 10. Fractals and L-Systems – Week 14

- **Recommended Background Reading for CIS 736**
- **Shared Lectures with CIS 536/636 (Introduction to Computer Graphics)**
 - Regular in-class lectures (30) and labs (7)
 - Guidelines for paper reviews – Week 6
 - Preparing term project presentations, CG demos – Weeks 11-12

- **Why Computer Graphics?**

 - **Developing Computational Capability**
 - Rendering: synthesizing realistic-looking, useful, or interesting images
 - Animation: creating visual impression of motion
 - Image processing: analyzing, transforming, displaying images efficiently

 - **Better Understanding of Data, Objects, Processes through Visualization**
 - Visual summarization, description, manipulation
 - Virtual environments (VR), visual monitoring, interactivity
 - Human-computer intelligent interaction (HCII): training, tutoring, analysis, control systems

 - **Time is Right**
 - Recent progress in algorithms and theory
 - Rapidly emergence of new I/O (display and data acquisition) technologies
 - Available computational power, improving price-performance-ratio of hardware
 - Growth and interest of graphics industries (e.g., games, entertainment, computer-aided design, visualization in science and business)
Rendering (Image Synthesis) Pipeline

- **Front-End** (Geometry Processing)
 - Graphics Database
 - Editing
 - Display
 - Traversal
 - Modeling
 - Transformation
 - Viewing
 - Operation

- **Back-End** (Rasterization)
 - Visible-Surface Determination
 - Scan Conversion
 - Shading / Illumination
 - Image

“Polygons-to-Pixels” Pipeline

User Interfaces & Hypermedia

- Hypermedia & Web 2.0
 - Web 2.0: SLATES (search, links, authoring, tags, extensions, signals)
 - Database format (similar to hypertext, internetworked multimedia)
 - Display-based access to text, image, audio, video, etc.

- Virtual Environments
 - Immersion: interactive training, tutoring systems
 - Entertainment hypermedia

- Graphical User Interfaces (GUIs)
 - Visualization: scientific, data/information, statistics
 - GUIs: Computer-Aided Design/Engineering (CAD/CAE/CAM/CASE), etc.
Relevant Topic Areas

- Analytic Geometry
- Art and Graphic Design
- Cognitive Science
- Computer Engineering
- Engineering Design
- Education
- Film
- Human Factors
- Linear Algebra
- Numerical Analysis

Parametric Equations
- Conics
- Polygon Rendering
- Surface Modeling
- Physically-Based Modeling
- Statistical Visualization

Transformations
- Change of Coordinate Systems

Shading Pipeline & Surface Modeling
(Boundary Representations)

Special Topics:
Multitexturing & Mappings

Stefan Jeschke
Research Assistant

Eduard Gröller
Associate Professor
Director, Visualization Working Group

Institute of Computer Graphics and Algorithms
Technical University of Vienna

Texturing material from slides © 2002 E. Gröller & S. Jeschke, Vienna University of Technology
http://bit.ly/dJFYq9

Stefan Jeschke
Research Assistant

Institute of Computer Graphics and Algorithms
Technical University of Vienna

Mapping material from slides © 1995 – 2009 P. Hanrahan, Stanford University

Pat Hanrahan
CANON USA Professor
Director, Computer Graphics Laboratory
Computer Science and Electrical Engineering Departments
Stanford University
http://graphics.stanford.edu/~hanrahan/

Computer-Generated Animation (CGA)

Monsters Inc. (2001)
Monsters Inc. 2 (2013) © Disney/Pixar

Kung-Fu Panda © 2008 DreamWorks Animation SKG

Happy Feet © 2006 Warner Brothers

Toy Story (1995)
Toy Story 2 (1999)
Toy Story 3 (2010) © Disney/Pixar

Shrek (2001)
Shrek 2 (2004)
Shrek the Third (2007)
Shrek Forever After (2010) © DreamWorks Animation SKG

Wall-E © 2008 Disney/Pixar

Tron: Legacy © 2010 Walt Disney Pictures

Luxo Jr. © 1986 Pixar Animation Studios

© Disney/Pixar

© Warner Brothers

© DreamWorks Animation SKG
Special Topics:
Computer-Generated Animation (CGA)

Jason Lawrence
Assistant Professor
Department of Computer Science
University of Virginia
http://www.cs.virginia.edu/~jdl/

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Thomas A. Funkhouser
Professor
Department of Computer Science
Computer Graphics Group
Princeton University
http://www.cs.princeton.edu/~funk/

Fractals:
Iterated Function Systems (IFS)

Fractal of the Day: http://sprott.physics.wisc.edu/fractals.htm
Information Visualization

Completed Design

Determine Objective of Graphics System
- Entertainment
- Decision Support
- Education
- Control Interface

Determine Display Objective
- Interactively Analyze Data / Documents
- Visualize Physical Objects
- Monitor Process

Determine Representations In Graphics Database
- Solid Geometric Model
- Wireframe / Polygon Mesh
- NURBS
- Fractal System

Determine and Implement Rendering Pipeline
- Shaded-Polygon Rendering
- Ray Tracing
- Radiosity and Polygon Shading

Completed Design

Design Choices & Issues In Computer Graphics
Textbook and Recommended References

Required Textbook

Recommended References

Next Class

- **Photorealism**
 - http://realismstudio.com

- **3-D Camera Model**
 - The GraPHIGS Programming Interface: Understanding Concepts
 - © 2007 IBM
 - http://bit.ly/c54h7q
Summary

- **This course is a lot of work**
 - Programming assignments (4): expect to spend 10+ hours on each
 - Written assignments (4): about 6-10 hours
 - Term project: at least 30 hours (people have spent up to 60 or more)
- … but it can also be fun
 - Visible results
 - Nifty algorithms, high-performance hardware
 - “Putting it all together”: very interdisciplinary field
 - Decent job market for people with right development skills, ideas
 - Applicable to many other areas of CS and IT
- **Emphasis**
 - “Polygons to pixels pipeline”: viewing, VSD, lighting, shading, texturing
 - Other topics to be covered: animation, curves and surfaces, collisions
 - Brief survey of: ray tracing, visualization and color, fractals
- **Tutorials (GameDev aka Nehe):** http://nehe.gamedev.net

Terminology

- **Computer Graphics: Digital Synthesis, Manipulation of Visual Content**
 - Geometry: representation and processing of surfaces
 - Animation: representation and manipulation of motion
 - Rendering: computationally reproducing appearance of light in scenes
 - Imaging: image acquisition, editing, processing
- **Different Approaches to Graphics**
 - Raster (bitmaps, picture elements aka pixels) vs. vector (lines)
 - Sample-based (cf. Photoshop) vs. geometry-based (cf. OpenGL, Direct3D)
- **Purpose of Graphics**
 - Entertainment – games, visual effects in movies and television
 - Communications – advertising, journalism
 - Modeling / simulation – displaying objects, events via graphical user interfaces (GUIs)
 - Visualization – displaying events for analysis and understanding
- **Dual Problem: Inverse Input and Output**
 - Graphics (rendering): geometry to sample (image)
 - Vision: sample to geometry