

<u>Lecture O of 41:</u> Part B - Course Content

Advanced Computer Graphics: Course Organization and Survey

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course page:

Course web site: http://www.kddresearch.org/Courses/CIS736
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Syllabus and Introductory Handouts

CIS 736 students: Advanced CG Topics 1 slides

Chapter 1, Eberly (2006) 3D Game Engine Design, 2e

Course Overview

- Graphics Systems and Techniques
 - * Main emphasis: shaders, lighting, mappings (textures, etc.) in OpenGL
 - * Photorealistic rendering and animation (Maya 2011, Blender; Ogre3D)
 - * 2-D, 3-D models: curves, surfaces, visible surface identification, illumination
 - * Special topics: global illumination (ray tracing, radiosity), particle systems, fractals, scientific visualization (sciviz) and information visualization (infoviz)
- Operations
 - * Surface modeling, mapping
 - * Pipelines for display, transformation, illumination, animation
- Computer Graphics (CG): Duality with Computer Vision
- Visualization and User Interfaces
- Applications
 - * CAD/CAM/CAE: object transformations, surface/solid modeling, animation
 - * Entertainment: 3-D games, photorealistic animation, etc.
 - * Analysis: info visualization, decision support, intelligent displays

CIS 736 Advanced Computer Graphics

Advanced CG Syllabus, Part 1 of 2

Lecture	Topic	Primary Source(s)
0	Course Overview	Chapter 1, Eberly 2 ^e
1	CG Refresher: Transformations; Lab 0	Sections (§) 2.1, 2.2
2	Viewing 1; Linear and Affine Transformations	§ 2.2.3 – 2.2.4, 2.8
3	Viewing 2; Parametric Equations	§ 2.3 esp. 2.3.4; FVFH slides
4	Lab 1a: 3-D Refresher; Flash, GL, Direct3D	Chapters 2, 16 ¹ , Angel <i>Primer</i>
5	Viewing 3: Scene Graphs: State, MVT	§ 2.3; 2.6, 2.7; 4.1 – 4.3
6	Scan Conversion 1: Lines & Antialiasing	§ 2.5.1, 3.1; FVFH slides
7	Viewing 4: Clipping, Culling, OBBs; Lab 1b	§ 2.3.5, 2.4, 3.1.3
8	Scan Conversion 2: Polygons, Clipping Intro	§ 2.4, 2.5 esp. 2.5.4, 3.1.6
9	Surface Detail 1: Phong Illumination	§ 2.5, 2.6.1 – 2.6.2, 4.3.2, 20.2
10	Lab 2a: Direct3D / DirectX Intro	§ 2.7, Direct3D handout
11	Surface Detail 2: OGLSL; Many Mappings	§ 2.6.3, 20.3 – 20.4, <i>Primer</i>
12	Surface Detail 3: Advanced Texture Mapping	§ 20.5 – 20.13
13	Surface Detail 4: Pixel/Vertex Shad.; Lab 2b	§ 3.1
14	Surface Detail 5: Writing Shaders; RenderMan	§ 3.2 – 3.4, Direct3D handout
15	Demos 1: CGA; Scene Graphs: Traversal	§ 4.4 – 4.7, CGA handout
16	Lab 3a: Alpha in Flash vs. GL, Direct3D	§ 2.6, 20.1, Primer
17	Animation 1: Keyframes, Interpolation	§ 5.1 – 5.2, OGLSL handout
	Exam 1 review; Hour Exam 1 (evening)	Chapters 1 – 4, 16, 20
18	Scene Graphs: Rendering; Lab 3b: OGLSL	§ 11.1, mesh handout
19	Demos 2: SFX; Inverse Kinematics	§ 5.3 – 5.5,CGA handout
20	Demos 3: Bézier, NURBS; CSG, Solid Models	§ 10.4, 11.3, 11.8, 12.2, 12.7

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Advanced CG Syllabus, Part 2 of 2

24	Lab Asi Animatian Design Mayo Madeling	Elech enimetion bandout
21	Lab 4a: Animation Basics; Maya Modeling	Flash animation handout
22	Animation 2: Euler Angles vs. Quaternions	Chapter 17, esp. §17.1 – 17.2
23	Demos 4: Modeling & Simulation; Smoothness	Chapter 10 ¹ , 13 ² , §17.3 – 17.5
24	Collisions 1: capsules/lozenges, Lab 4b	§2.4.3, 8.1, GL handout
25	Spatial Sorting: BSP and Portals	Chapter 6, esp. §6.1
26	Demos 5: More CGA; Picking Modes	Chapter 7 ² ; § 8.4
27	Lab 5a: Picking in OpenGL, Flash	§ 8.3 – 8.4; 4.2, 5.0, 5.6, 9.1
28	Collisions 2: Dynamic, Particle Systems	§ 9.1, particle system handout
	Exam 2 review; Hour Exam 2 (evening)	Chapters 5 – 6, 7 ² – 8, 12, 17
29	Lab 5b: Advanced Particle Systems	Particle system handout
30	Animation 3: Control & IK, PBM	§ 5.3, CGA handout
31	Ray Tracing 1: intersections, recursion, trees	Chapter 14
32	Lab 6a: Ray Tracing w/POV-Ray	RT handout
33	Ray Tracing 2: refraction, supersampling	Chapter 15, RT handout
34	Visualization 1: Graphical Integrity, Data-Ink	Tufte handout (1)
35	Lab 6b: More Ray Tracing	RT handout
36	Visualization 2: Small Multiples, Macro/Micro	Tufte handout (2 & 4)
37	Fractals & fBm; Term Project Prep	Color handout
38	Lab 7: Fractals & Terrain Generation	Fractals/Terrain handout
39	Visualization 3: Confections, HCI; Review 1	Tufte handout (3)
40	Term project presentations 1; Review 2	_
41	Term project presentations 2	_
	Final Exam	Ch. 1 – 8, 10 – 15, 17, 20

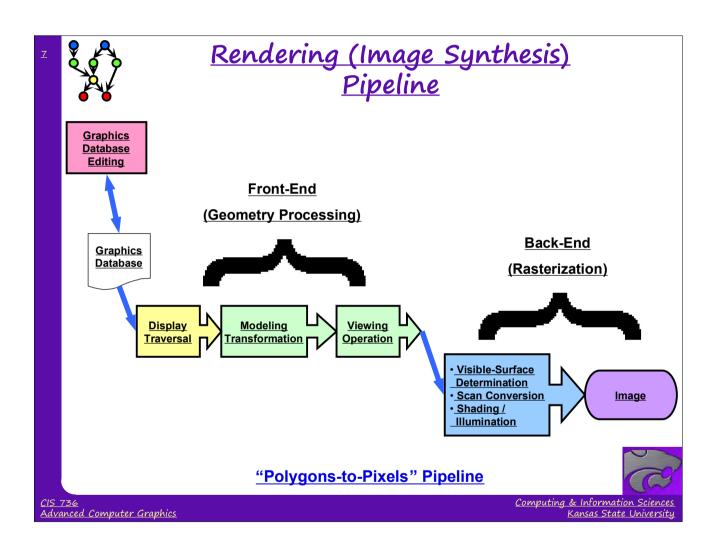
Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review, and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Online Recorded Lectures for CIS 736 (Computer Graphics)

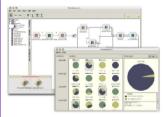
- **Project Topics for CIS 736**
- **Advanced Topics in Computer Graphics (10)**
 - * 1. Filters for Texturing Week 2
 - * 2. Level-of-Detail Algorithms and Terrain Week 3
 - * 3. More Mappings Week 6
 - * 4. More on Animation Week 8
 - * 5. Character Modeling and IK Week 9
 - * 6. Global Illumination: Photon Maps (Radiosity) Week 10
 - * 7. Advanced Lighting Models Week 11
 - * 8. Advanced Ray-Tracing Week 12
 - **★ 9. More on Scientific, Data, Info Visualization Week 13**
 - * 10. Fractals and L-Systems Week 14
- Recommended Background Reading for CIS 736
- Shared Lectures with CIS 536/636 (Introduction to Computer Graphics)
 - * Regular in-class lectures (30) and labs (7)
 - * Guidelines for paper reviews Week 6
 - * Preparing term project presentations, CG demos Weeks 11-12

<u>CIS 736</u> Advanced Computer Graphics



Why Computer Graphics?

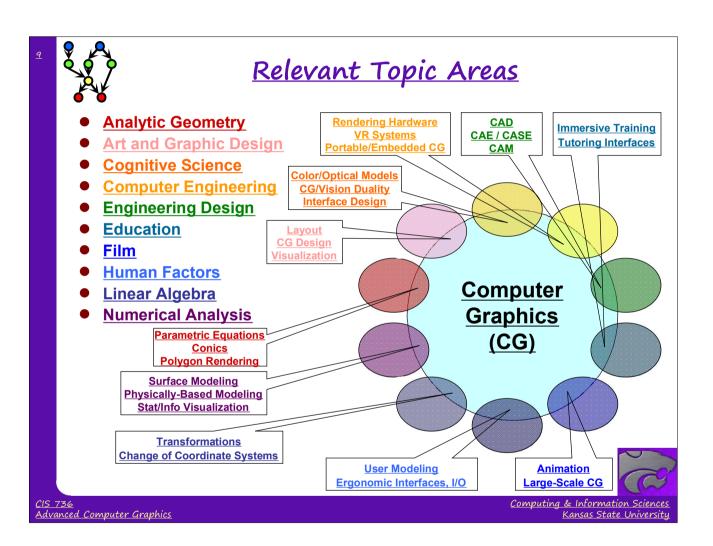
- Developing Computational Capability
 - * Rendering: synthesizing realistic-looking, useful, or interesting images
 - * Animation: creating visual impression of motion
 - * Image processing: analyzing, transforming, displaying images efficiently
- Better Understanding of Data, Objects, Processes through Visualization
 - * Visual summarization, description, manipulation
 - **★** Virtual environments (VR), visual monitoring, interactivity
 - * Human-computer intelligent interaction (HCII): training, tutoring, analysis, control systems
- Time is Right
 - * Recent progress in algorithms and theory
 - * Rapidly emergence of new I/O (display and data acquisition) technologies
 - * Available computational power, improving price-performance-ratio of hardware
 - * Growth and interest of graphics industries (e.g., games, entertainment, computer-aided design, visualization in science and business)

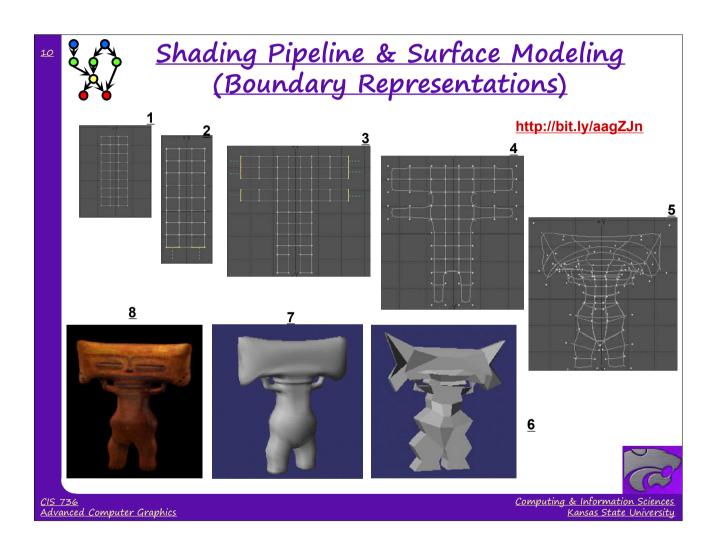


<u>CIS 736</u> Advanced Computer Graphics

<u>User Interfaces</u> <u>& Hypermedia</u>

NCSA SEASR/MEANDRE


(2008 – present): http://seasr.org
Visual programming systems for
high-performance knowledge
discovery in databases (KDD),
cloud computing, and more


D2K © 1999-2004 National Center for Supercomputing Applications http://alg.ncsa.uiuc.edu/do/tools/d2k

- Hypermedia & Web 2.0
 - **★ Web 2.0: SLATES (search, links, authoring, tags, extensions, signals)**
 - * Database format (similar to hypertext): internetworked multimedia
 - * Display-based access to text, image, audio, video, etc.
- Virtual Environments
 - * Immersion: interactive training, tutoring systems
 - * Entertainment hypermedia
- Graphical User Interfaces (GUIs)
 - * Visualization: scientific, data/information, statistics
 - * GUIs: Computer-Aided Design/Engineering (CAD/CAE/CAM/CASE), etc.

CIS 736 Advanced Computer Graphics

<u>11</u>

<u>Special Topics:</u> <u>Multitexturing & Mappings</u>

Stefan Jeschke Research Assistant http://bit.ly/hUUM94 Eduard Gröller
Associate Professor
Director, Visualization Working Group
http://bit.ly/hUUM94

Institute of Computer Graphics and Algorithms
Technical University of Vienna

TECHNISCHE UNIVERSITÄT WIEN Institut für Computergraphik und Algorithmen Arbeitsbereich Computergraphik

Texturing material from slides © 2002 E. Gröller & S. Jeschke, Vienna University of Technology http://bit.ly/dJFYq9

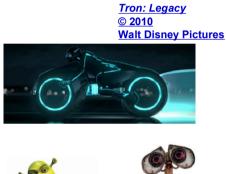
Mapping material from slides © 1995 – 2009 P. Hanrahan, Stanford University http://bit.ly/hZfsjZ (CS 348B, Computer Graphics: Image Synthesis Techniques)

<u>CIS 736</u> Advanced Computer Graphics

Computer-Generated Animation (CGA)

Monsters Inc. (2001)
Monsters Inc. 2 (2012)
© Disney/Pixar

Kung-Fu Panda
© 2008 DreamWorks
Animation SKG


Happy Feet © 2006 Warner Brothers

Toy Story (1995)
Toy Story 2 (1999)
Toy Story 3 (2010)
© Disney/Pixar

<u>Luxo Jr.</u>
© 1986 Pixar Animation Studios

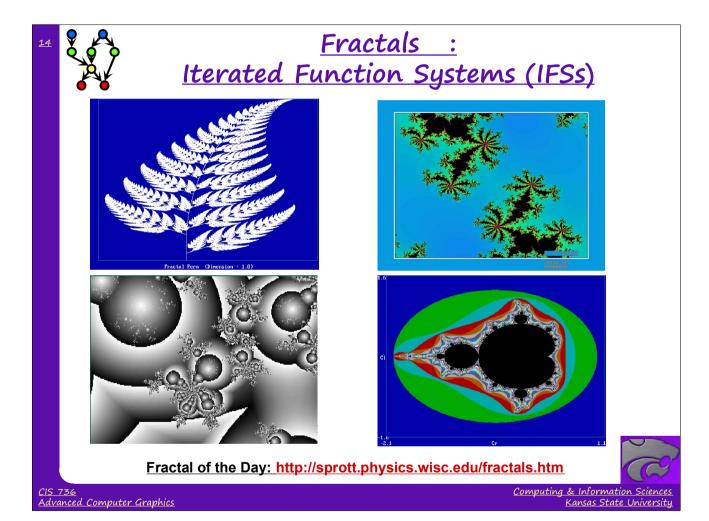
Shrek (2001) © 2008 Disney/Pixar
Shrek 2 (2004)
Shrek the Third (2007)
Shrek Forever After (2010)
© DreamWorks Animation SKG

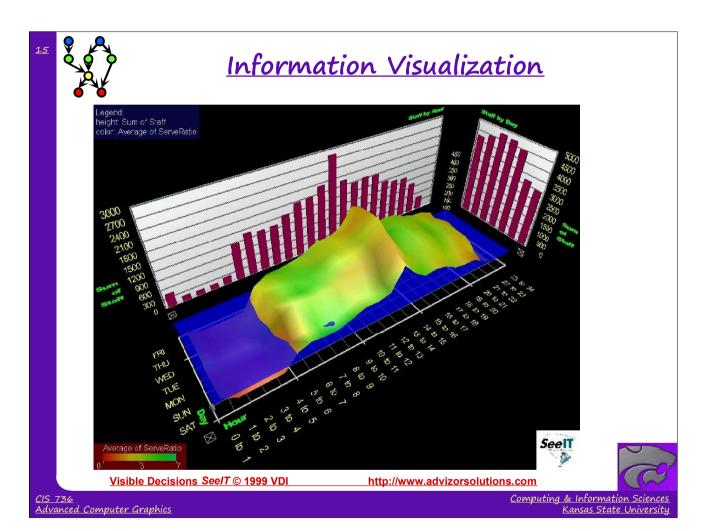
CIS 736 Advanced Computer Graphics

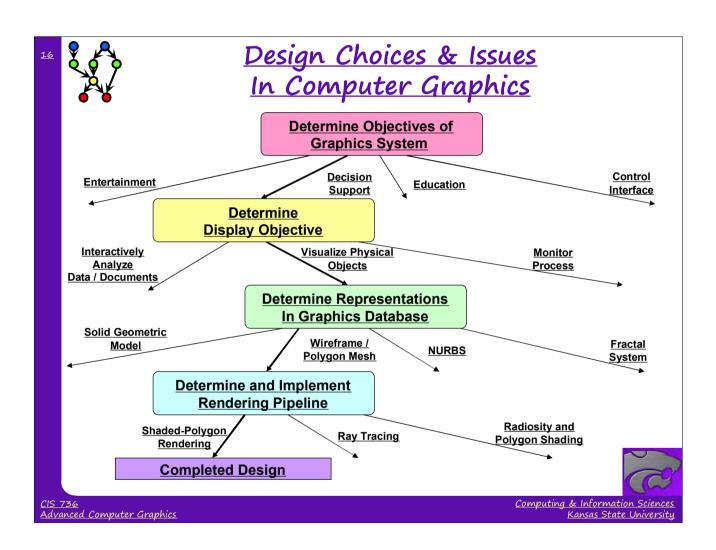
Special Topics: Computer-Generated Animation (CGA)

Jason Lawrence
Assistant Professor
Department of Computer Science
University of Virginia
http://www.cs.virginia.edu/~jdl/

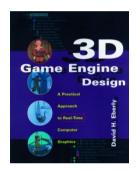
Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin http://bit.ly/eB10j4

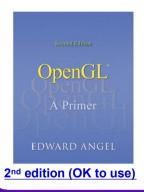

Thomas A. Funkhouser


Professor
Department of Computer Science
Computer Graphics Group
Princeton University
http://www.cs.princeton.edu/~funk/



<u>CIS 736</u> Advanced Computer Graphics





<u>Textbook</u> and Recommended References

1st edition (outdated)

2nd edition

Required Textbook

Eberly, D. H. (2006). 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, second edition. San Francisco, CA: Morgan Kauffman.

Recommended References

Angel, E. O. (2007). OpenGL: A Primer, third edition. Reading, MA: Addison-Wesley. [2nd edition on reserve]

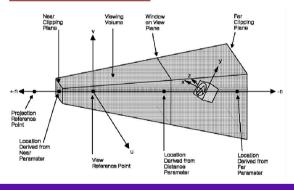
Shreiner, D., Woo, M., Neider, J., & Davis, T. (2009). OpenGL® Programming Guide: The Official Guide to Learning OpenGL®, Versions 3.0 and 3.1, seventh edition.

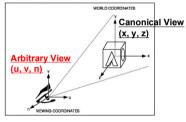
["The Red Book": use 7th ed. or later]

CIS 736 Advanced Computer Graphics

Next Class

Photorealism


http://realismstudio.com



© 2001 Square Enix Studios

http://bit.ly/9YzCZy

• 3-D Camera Model

The GraPHIGS Programming Interface:
Understanding Concepts
© 2007 IBM
http://bit.ly/cS4h7g

CIS 736 Advanced Computer Graphics

Summary

- This course is a lot of work
 - * Reading: Eberly 2° big book, like Foley et al.
 - * Programming assignments (4): expect to spend 10+ hours on each
 - **★** Written assignments (4): about 6-10 hours
 - * Term project: at least 30 hours (people have spent up to 60 or more)
- ... but it can also be fun
 - * Visible results
 - * Nifty algorithms, high-performance hardware
 - * "Putting it all together": very interdisciplinary field
 - * Decent job market for people with right development skills, ideas
 - * Applicable to many other areas of CS and IT
- Emphasis
 - * "Polygons to pixels pipeline": viewing, VSD, lighting, shading, texturing
 - * Other topics to be covered: animation, curves and surfaces, collisions
 - **★** Brief survey of: ray tracing, visualization and color, fractals
- Tutorials (GameDev aka Nehe): http://nehe.gamedev.net

CIS 736 Advanced Computer Graphics

Terminology

- Computer Graphics: Digital Synthesis, Manipulation of Visual Content
- Graphics Problems (see "Computer Graphics", Wikipedia)
 - **★** Geometry: representation and processing of surfaces
 - * Animation: representation and manipulation of motion
 - * Rendering: computationally reproducing appearance of light in scenes
 - * Imaging: image acquisition, editing, processing
- Different Approaches to Graphics
 - * Raster (bitmaps, picture elements aka pixels) vs. vector (lines)
 - * Sample-based (cf. Photoshop) vs. geometry-based (cf. OpenGL, Direct3D)
- Purpose of Graphics
 - * Entertainment games, visual effects in movies and television
 - * Communications advertising, journalism
 - * Modeling / simulation displaying objects, events via graphical user interfaces (GUIs)
 - **★ Visualization displaying events for analysis and understanding**
- Dual Problem: Inverse Input and Output
 - * Graphics (rendering): geometry to sample (image)
 - * Vision: sample to geometry

<u>CIS 736</u> Advanced Computer Graphics