Lecture 0 of 41:
Part B – Course Content

Advanced Computer Graphics:
Course Organization and Survey

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course page:
Course web site: http://www.kddresearch.org/Courses/CIS736
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:
Syllabus and Introductory Handouts
CIS 736 students: Advanced CG Topics 1 slides
Chapter 1, Eberly (2006) 3D Game Engine Design, 2e
Course Overview

- **Graphics Systems and Techniques**
 - Main emphasis: shaders, lighting, mappings (textures, etc.) in OpenGL
 - Photorealistic rendering and animation (Maya 2011, Blender; Ogre3D)
 - 2-D, 3-D models: curves, surfaces, visible surface identification, illumination
 - Special topics: global illumination (ray tracing, radiosity), particle systems, fractals, scientific visualization (sciviz) and information visualization (infoviz)

- **Operations**
 - Surface modeling, mapping
 - Pipelines for display, transformation, illumination, animation

- **Computer Graphics (CG): Duality with Computer Vision**

- **Visualization and User Interfaces**

- **Applications**
 - CAD/CAM/CAE: object transformations, surface/solid modeling, animation
 - Entertainment: 3-D games, photorealistic animation, etc.
 - Analysis: info visualization, decision support, intelligent displays
Advanced CG Syllabus, Part 1 of 2

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Primary Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Course Overview</td>
<td>Chapter 1, Eberly 2nd</td>
</tr>
<tr>
<td>1</td>
<td>CG Refresher: Transformations; Lab 0</td>
<td>Sections (§) 2.1, 2.2</td>
</tr>
<tr>
<td>2</td>
<td>Viewing 1: Linear and Affine Transformations</td>
<td>§ 2.2.3 – 2.2.4, 2.8</td>
</tr>
<tr>
<td>3</td>
<td>Viewing 2: Parametric Equations</td>
<td>§ 2.3 esp, 2.3.4; FVFH slides</td>
</tr>
<tr>
<td>4</td>
<td>Lab 1a: 3-D Refresher, Flash, GL, Direct3D</td>
<td>Chapters 2, 16: Angel Primer</td>
</tr>
<tr>
<td>5</td>
<td>Viewing 3: Scene Graphs: State, MVT</td>
<td>§ 2.3, 2.6, 2.7; 4.1 – 4.3</td>
</tr>
<tr>
<td>6</td>
<td>Scan Conversion 1: Lines & Antialiasing</td>
<td>§ 2.5.1, 3.1; FVFH slides</td>
</tr>
<tr>
<td>7</td>
<td>Viewing 4: Clipping, Culling, OBBs; Lab 1b</td>
<td>§ 2.3.5, 2.4, 3.1.3</td>
</tr>
<tr>
<td>8</td>
<td>Scan Conversion 2: Polygons, Clipping Intro</td>
<td>§ 2.4, 2.5 esp 2.6.4, 3.1.6</td>
</tr>
<tr>
<td>9</td>
<td>Surface Detail 1: Phong Illumination</td>
<td>§ 2.5, 2.6.1 – 2.6.2, 4.3.2, 20.2</td>
</tr>
<tr>
<td>10</td>
<td>Lab 2a: Direct3D / DirectX Intro</td>
<td>§ 2.7, Direct3D handout</td>
</tr>
<tr>
<td>11</td>
<td>Surface Detail 2: OGLSL, Many Mappings</td>
<td>§ 2.6.3, 20.3 – 20.4, Primer</td>
</tr>
<tr>
<td>12</td>
<td>Surface Detail 3: Advanced Texture Mapping</td>
<td>§ 20.5 – 20.13</td>
</tr>
<tr>
<td>13</td>
<td>Surface Detail 4: Pixel/Vertex Shad.; Lab 2b</td>
<td>§ 3.1</td>
</tr>
<tr>
<td>14</td>
<td>Surface Detail 5: Writing Shaders, RenderMan</td>
<td>§ 3.2 – 3.4, Direct3D handout</td>
</tr>
<tr>
<td>15</td>
<td>Demos 1: CGA; Scene Graphs: Traversal</td>
<td>§ 4.4 – 4.7, CGA handout</td>
</tr>
<tr>
<td>16</td>
<td>Lab 3a: Alpha in Flash vs. GL, Direct3D</td>
<td>§ 2.6, 20.1, Primer</td>
</tr>
<tr>
<td>17</td>
<td>Animation 1: Keyframes, Interpolation</td>
<td>§ 5.1 – 5.2, OGLSL handout</td>
</tr>
<tr>
<td>18</td>
<td>Exam 1 review; Hour Exam 1 (evening)</td>
<td>Chapters 1 – 4, 16, 20</td>
</tr>
<tr>
<td>19</td>
<td>Scene Graphs: Rendering; Lab 3b: OGLSL</td>
<td>§ 11.1, mesh handout</td>
</tr>
<tr>
<td>20</td>
<td>Demos 2: SPX; Inverse Kinematics</td>
<td>§ 5.3 – 5.5, CGA handout</td>
</tr>
<tr>
<td>21</td>
<td>Demos 3: Bézier, NURBS, CSG, Solid Models</td>
<td>§ 10.4, 11.3, 11.8, 12.2, 12.7</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set. Heavy-shaded entries, that of a machine problem (programming assignment). Blue-shaded entries, that of a paper review, and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
Advanced CG Syllabus, Part 2 of 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Lab 4a: Animation Basics; Maya Modeling</td>
<td>Flash animation handout</td>
</tr>
<tr>
<td>22</td>
<td>Animation 2: Euler Angles vs. Quaternions</td>
<td>Chapter 17, esp. §17.1 – 17.2</td>
</tr>
<tr>
<td>23</td>
<td>Demos 4: Modeling & Simulation; Smoothness</td>
<td>Chapter 10 (^3), 13 (^2), §17.3 – 17.5</td>
</tr>
<tr>
<td>24</td>
<td>Collisions 1: capsules/lozenges, Lab 4b</td>
<td>§2.4.3, 8.1, GL handout</td>
</tr>
<tr>
<td>25</td>
<td>Spatial Sorting: BSP and Portals</td>
<td>Chapter 6, esp. §6.1</td>
</tr>
<tr>
<td>26</td>
<td>Demos 5: More CGA; Picking Modes</td>
<td>Chapter 7 (^7); § 8.4</td>
</tr>
<tr>
<td>27</td>
<td>Lab 5a: Picking in OpenGL, Flash</td>
<td>§ 8.3 – 8.4; 4.2, 5.0, 5.6, 9.1</td>
</tr>
<tr>
<td>28</td>
<td>Collisions 2: Dynamic, Particle Systems</td>
<td>§ 9.1, particle system handout</td>
</tr>
<tr>
<td>29</td>
<td>Exam 2 review: Hour Exam 2 (evening)</td>
<td>Chapters 5 – 6, 7 (^7) – 8, 12, 17</td>
</tr>
<tr>
<td>30</td>
<td>Lab 5b: Advanced Particle Systems</td>
<td>Particle system handout</td>
</tr>
<tr>
<td>31</td>
<td>Animation 3: Control & IK, PBM</td>
<td>§ 5.3, CGA handout</td>
</tr>
<tr>
<td>32</td>
<td>Ray Tracing 1: intersections, recursion, trees</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>33</td>
<td>Lab 6a: Ray Tracing w/POV-Ray</td>
<td>RT handout</td>
</tr>
<tr>
<td>34</td>
<td>Ray Tracing 2: refraction, supersampling</td>
<td>Chapter 15, RT handout</td>
</tr>
<tr>
<td>35</td>
<td>Visualization 1: Graphical Integrity, Data-Ink</td>
<td>Tufte handout (1)</td>
</tr>
<tr>
<td>36</td>
<td>Lab 6b: More Ray Tracing</td>
<td>RT handout</td>
</tr>
<tr>
<td>37</td>
<td>Visualization 2: Small Multiples, Macro/Micro</td>
<td>Tufte handout (2 & 4)</td>
</tr>
<tr>
<td>38</td>
<td>Fractals & Ibm, Term Project Prep</td>
<td>Color handout</td>
</tr>
<tr>
<td>39</td>
<td>Lab 7: Fractals & Terrain Generation</td>
<td>Fractals/Terrain handout</td>
</tr>
<tr>
<td>40</td>
<td>Visualization 3: Confections, HCI; Review 1</td>
<td>Tufte handout (3)</td>
</tr>
<tr>
<td>41</td>
<td>Term project presentations 1; Review 2</td>
<td>–</td>
</tr>
<tr>
<td>42</td>
<td>Term project presentations 2</td>
<td>–</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set; heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
• Project Topics for CIS 736
• Advanced Topics in Computer Graphics (10)
 1. Filters for Texturing – Week 2
 2. Level-of-Detail Algorithms and Terrain – Week 3
 3. More Mappings – Week 6
 4. More on Animation – Week 8
 5. Character Modeling and IK – Week 9
 7. Advanced Lighting Models – Week 11
 8. Advanced Ray-Tracing – Week 12
 9. More on Scientific, Data, Info Visualization – Week 13
 10. Fractals and L-Systems – Week 14

• Recommended Background Reading for CIS 736
• Shared Lectures with CIS 536/636 (Introduction to Computer Graphics)
 Regular in-class lectures (30) and labs (7)
 Guidelines for paper reviews – Week 6
 Preparing term project presentations, CG demos – Weeks 11-12
Why Computer Graphics?

- **Developing Computational Capability**
 - Rendering: synthesizing realistic-looking, useful, or interesting images
 - Animation: creating visual impression of motion
 - Image processing: analyzing, transforming, displaying images efficiently

- **Better Understanding of Data, Objects, Processes through Visualization**
 - Visual summarization, description, manipulation
 - Virtual environments (VR), visual monitoring, interactivity
 - Human-computer intelligent interaction (HCII): training, tutoring, analysis, control systems

- **Time is Right**
 - Recent progress in algorithms and theory
 - Rapidly emergence of new I/O (display and data acquisition) technologies
 - Available computational power, improving price-performance-ratio of hardware
 - Growth and interest of graphics industries (e.g., games, entertainment, computer-aided design, visualization in science and business)
Rendering (Image Synthesis) Pipeline

Front-End
(Geometry Processing)

Back-End
(Rasterization)

“Polygons-to-Pixels” Pipeline

- Visible-Surface Determination
- Scan Conversion
- Shading / Illumination

Display Traversal → Modeling Transformation → Viewing Operation → Image
User Interfaces & Hypermedia

Hypermedia & Web 2.0
- Web 2.0: SLATES (search, links, authoring, tags, extensions, signals)
- Database format (similar to hypertext): internetworked multimedia
- Display-based access to text, image, audio, video, etc.

Virtual Environments
- Immersion: interactive training, tutoring systems
- Entertainment hypermedia

Graphical User Interfaces (GUIs)
- Visualization: scientific, data/information, statistics
- GUIs: Computer-Aided Design/Engineering (CAD/CAE/CAM/CASE), etc.

Visual programming systems for high-performance knowledge discovery in databases (KDD), cloud computing, and more

D2K © 1999-2004 National Center for Supercomputing Applications
http://alg.ncsa.uiuc.edu/do/tools/d2k
Relevant Topic Areas

- Analytic Geometry
- Art and Graphic Design
- Cognitive Science
- Computer Engineering
- Engineering Design
- Education
- Film
- Human Factors
- Linear Algebra
- Numerical Analysis

Computer Graphics (CG)

- Parametric Equations
- Conics
- Polygon Rendering
- Surface Modeling
- Physically-Based Modeling
- Stat/Info Visualization
- Transformations
- Change of Coordinate Systems

- Rendering Hardware
- VR Systems
- Portable/Embedded CG
- Color/Optical Models
- CG/Vision Duality
- Interface Design
- Layout
- CG Design
- Visualization

- User Modeling
- Ergonomic Interfaces, I/O

- Immersive Training
- Tutoring Interfaces
- CAD
- CAE / CASE
- CAM
- CAD
- CAE / CASE
- CAM
- Portable/Embedded CG
- Color/Optical Models
- CG/Vision Duality
- Interface Design
- Layout
- CG Design
- Visualization

- Animation
- Large-Scale CG
Shading Pipeline & Surface Modeling
(Boundary Representations)

Special Topics:
Multitexturing & Mappings

Stefan Jeschke
Research Assistant

Eduard Gröller
Associate Professor
Director, Visualization Working Group

Institute of Computer Graphics and Algorithms
Technical University of Vienna

Texturing material from slides © 2002 E. Gröller & S. Jeschke, Vienna University of Technology
http://bit.ly/dJFYq9

Mapping material from slides © 1995 – 2009 P. Hanrahan, Stanford University
Computer-Generated Animation (CGA)

Monsters Inc. (2001)
© Disney/Pixar

Monsters Inc. 2 (2012)
© Disney/Pixar

Kung-Fu Panda
© 2008 DreamWorks Animation SKG

Happy Feet
© 2006 Warner Brothers

Toy Story (1995)
© Disney/Pixar

Toy Story 2 (1999)
© Disney/Pixar

Toy Story 3 (2010)
© Disney/Pixar

Shrek (2001)
© DreamWorks Animation SKG

Shrek 2 (2004)

Shrek the Third (2007)
© DreamWorks Animation SKG

Shrek Forever After (2010)

Tron: Legacy
© 2010 Walt Disney Pictures

Wall-E
© 2008 Disney/Pixar

Happy Feet
© 2006 Warner Brothers

Luxo Jr.
© 1986 Pixar Animation Studios

Computer-Generated Animation (CGA)
Special Topics:
Computer-Generated Animation (CGA)

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Jason Lawrence
Assistant Professor
Department of Computer Science
University of Virginia
http://www.cs.virginia.edu/~jdl/

Thomas A. Funkhouser
Professor
Department of Computer Science
Computer Graphics Group
Princeton University
http://www.cs.princeton.edu/~funk/
Fractals: Iterated Function Systems (IFSs)

Fractal of the Day: http://sprott.physics.wisc.edu/fractals.htm
Information Visualization

Legend:
- height: Sum of Sales
- color: Average of Sales Ratio

Average of Sales Ratio

Visible Decisions SeeIT © 1999 VDI http://www.advizorsolutions.com
Design Choices & Issues
In Computer Graphics

Determine Objectives of Graphics System
- Entertainment
- Decision Support
- Education
- Control Interface
- Monitor Process
- Interactively Display Objective
- Visualize Physical Objects

Determine Representations In Graphics Database
- Solid Geometric Model
- Wireframe / Polygon Mesh
- NURBS
- Fractal System
- Shaded-Polygon Rendering
- Ray Tracing
- Radiosity and Polygon Shading

Determine and Implement Rendering Pipeline

Completed Design
Required Textbook

Recommended References

Next Class

- Photorealism

http://realismstudio.com

- 3-D Camera Model

© 2001 Square Enix Studios

The GraPHiGS Programming Interface: Understanding Concepts
© 2007 IBM
http://bit.ly/cS4h7g
Summary

- **This course is a lot of work**
 - Reading: Eberly 2e – big book, like Foley *et al.*
 - Programming assignments (4): expect to spend 10+ hours on each
 - Written assignments (4): about 6-10 hours
 - Term project: at least 30 hours (people have spent up to 60 or more)

- **... but it can also be fun**
 - Visible results
 - Nifty algorithms, high-performance hardware
 - “Putting it all together”: very interdisciplinary field
 - Decent job market for people with right development skills, ideas
 - Applicable to many other areas of CS and IT

- **Emphasis**
 - “Polygons to pixels pipeline”: viewing, VSD, lighting, shading, texturing
 - Other topics to be covered: animation, curves and surfaces, collisions
 - Brief survey of: ray tracing, visualization and color, fractals

- **Tutorials (GameDev aka Nehe):** http://nehe.gamedev.net
Terminology

- **Computer Graphics: Digital Synthesis, Manipulation of Visual Content**
 - **Geometry**: representation and processing of surfaces
 - **Animation**: representation and manipulation of motion
 - **Rendering**: computationally reproducing appearance of light in scenes
 - **Imaging**: image acquisition, editing, processing
 - **Different Approaches to Graphics**
 - **Raster (bitmaps, picture elements aka pixels) vs. vector (lines)**
 - **Sample-based (cf. Photoshop) vs. geometry-based (cf. OpenGL, Direct3D)**
 - **Purpose of Graphics**
 - **Entertainment** – games, visual effects in movies and television
 - **Communications** – advertising, journalism
 - **Modeling / simulation** – displaying objects, events via graphical user interfaces (GUIs)
 - **Visualization** – displaying events for analysis and understanding
 - **Dual Problem: Inverse Input and Output**
 - **Graphics (rendering):** geometry to sample (image)
 - **Vision:** sample to geometry