Lecture 5 of 41

Viewing 3 of 4: Normalizing Transformation and Fixed-Function Graphics Pipeline

William H. Hsu
Department of Computing and Information Sciences, KSU

Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2e – see http://bit.ly/ieUq45
Next class:
This week: FVFH slides on Viewing

Lecture Outline

- Reading for Last Class: Chapters 2, 16, Eberly 2e; Foley et al. Slides
- Reading for Today: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2e
- Reading for Next Class: §2.5.1, 3.1 Eberly 2e
- Last Time: Basic Viewing Principles
 - Projections: definitions, history
 - Perspective: optical principles, terminology
- Today: View Volume Specification and Viewing Transformation
 - View volumes: ideal vs. approximated
 - Frustum in computer graphics (CG)
 - Specifying view volume in CG: Look and Up vectors
 - Aspect ratio, view angle, front/back clipping planes
 - Focal length
 - Parallel (cuboid) view volume & perspective frustum
 - Normalizing transformation (NT) & viewing transformation (VT)
- Next Time: Fixed-Function Graphics Pipeline
Where We Are

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Primary Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Course Overview</td>
<td>Chapter 1, Elder et al.</td>
</tr>
<tr>
<td>1</td>
<td>CG Basics: Transformation Matrices; Lab 0</td>
<td>Sections (a) 2.1, 2.2</td>
</tr>
<tr>
<td>2</td>
<td>Viewing 1: Overview, Projections</td>
<td>2.3 esp. 2.4.26</td>
</tr>
<tr>
<td>3</td>
<td>Viewing 2: Viewing Transformation</td>
<td>2.3 esp. 2.3.4. FVPH slides</td>
</tr>
<tr>
<td>4</td>
<td>Lab 1a: Flash & OpenGL Basics</td>
<td>Ch. 2, 18. Angel Primer</td>
</tr>
<tr>
<td>5</td>
<td>Viewing 3: Graphics Pipeline</td>
<td>2.3 esp. 2.3.7, 26.27</td>
</tr>
<tr>
<td>6</td>
<td>Scan Conversion 1: Cities, Ray Tracing Algorithm</td>
<td>2.5, 3.1, FVPH slides</td>
</tr>
<tr>
<td>7</td>
<td>Viewing 4: Clipping & Culling; Lab 1b</td>
<td>2.3, 2.4, 2.4.3, 1.3</td>
</tr>
<tr>
<td>8</td>
<td>Scan Conversion 2: Polygons, Clipping Intro</td>
<td>2.4, 2.5 esp. 2.5.4, 3.16</td>
</tr>
<tr>
<td>9</td>
<td>Surface Detail 1: Illumination & Shading</td>
<td>2.5, 2.6.1 – 26.2, 4.3.2, 20.2</td>
</tr>
<tr>
<td>10</td>
<td>Lab 2a: Direct3D / DirectX Intro</td>
<td>§ 2.7, Direct3D handout</td>
</tr>
<tr>
<td>11</td>
<td>Surface Detail 2: Textures, OpenGL Shading</td>
<td>2.6.3, 20.3 – 20.4, Primer</td>
</tr>
<tr>
<td>12</td>
<td>Surface Detail 3: Mapping: OpenGL Textures</td>
<td>20.5 – 20.13</td>
</tr>
<tr>
<td>13</td>
<td>Surface Detail 4: Pixel/Vertex Shad.; Lab 2b</td>
<td>§ 3.1</td>
</tr>
<tr>
<td>14</td>
<td>Surface Detail 5: DirectX Shading; QGLSL</td>
<td>3.2 – 3.4, DirectX handout</td>
</tr>
<tr>
<td>15</td>
<td>Demos 1: CGA, Fun Scene Graphs, State</td>
<td>6.4.1 – 4.3, CGA handout</td>
</tr>
<tr>
<td>16</td>
<td>Lab 3a: Shading & Transparency</td>
<td>§ 2.6, 20.1, Primer</td>
</tr>
<tr>
<td>17</td>
<td>Animation 1: Basics, Keyframes; HW/Exam</td>
<td>§ 5.1 – 5.2</td>
</tr>
<tr>
<td>18</td>
<td>Exam 1 review; Hour Exam 1 (evening)</td>
<td>Chapters 1 – 4, 10</td>
</tr>
<tr>
<td>19</td>
<td>Scene Graphs: Rendering; Lab 3b: Shader</td>
<td>§ 4.4 – 4.7</td>
</tr>
<tr>
<td>20</td>
<td>Demos 2: SFX, Skinning, Morphing</td>
<td>§ 8.3 – 8.6, CGA handout</td>
</tr>
<tr>
<td>20</td>
<td>Demos 3: Surfaces, B-Rep/Volume Graphics</td>
<td>10.4, 12.7, Mesh handout</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set, heavily-shaded entries that of a machine problem (programming assignment), blue-shaded entries that of a paper review, and the green-shaded entry that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Acknowledgements

Jim Foley
Professor, College of Computing & Telecommunications
Georgia Institute of Technology

Andy van Dam
T. J. Watson University Professor of Technology and Education &
Professor of Computer Science
Brown University

Steve Feiner
Professor of Computer Science & Director, Computer Graphics and User Interfaces Laboratory
Columbia University

John F. Hughes
Associate Professor of Computer Science
Brown University

James D. Foley
Georgia Tech

Andries van Dam
Brown University
http://www.cs.brown.edu/~avd/

Steven K. Feiner
Columbia University
http://www.cs.columbia.edu/~feiner/

John F. Hughes
Brown University
http://www.cs.brown.edu/~jfh/
Review: Types of Projections

- Parallel projections used for engineering and architecture because they can be used for measurements.
- Perspective imitates eyes or camera and looks more natural.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Review: Synthetic Camera for 3-D Viewing

- The synthetic camera is the programmer’s model to specify 3D view projection parameters to the computer.
- General synthetic camera: each package has its own but they are all (nearly) equivalent. (PHIGS³ Camera, Computer Graphics: Principles and Practice, ch. 6 and 7)
 - position of camera
 - orientation
 - field of view (wide angle, normal...)
 - depth of field (near distance, far distance)
 - focal distance
 - tilt of view/film plane (if not normal to view direction, produces oblique projections)
 - perspective or parallel projection? (camera near objects or an infinite distance away)
- CS123 uses a simpler, slightly less powerful model than the book’s
 - omit tilt of view/film plane, focal distance (blurring)

³ This package is no longer in use but still has the most general synthetic camera model for perspective and parallel projections.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Review: Look and Up Vectors

- More concrete way to say the same thing as orientation
 - soon you'll learn how to express orientation in terms of Look and Up vectors
- Look Vector
 - the direction the camera is pointing
 - three degrees of freedom; can be any vector in 3-space
- Up Vector
 - determines how the camera is rotated around the Look vector
 - for example, whether you're holding the camera horizontally or vertically (or in between)
 - Up vector must not be parallel to Look vector (Up vector may be specified at an arbitrary angle to its Look vector)

Note: For ease of specification, the Up vector need not be orthogonal to the Look vector as long as they are not parallel

Review: View Volume for Parallel Projection

- Limiting view volume useful for eliminating extraneous objects
- Orthographic parallel projection has width and height view angles of zero
Review: View Volume for Perspective Projection

- Projection of up vector
- Look Vector
- Position
- Width Angle \(\theta_w \)
- Height Angle \(\theta_h \)
- Removes objects too far from Position, which otherwise would merge into "blobs"
- Removes objects too close to Position (would be excessively distorted)

Viewing in Three Dimensions: Mathematics of Projections

- Reduce degrees of freedom; four steps to specifying view volume
 1. Position camera (and therefore its view/film plane)
 2. Orient camera to point at what you want to see
 3. Define field of view
 - perspective: aspect ratio of film and angle of view: between wide angle, normal, and zoom
 - parallel: width and height
 4. Choose perspective or parallel projection

(Optional: Specify a focal distance and exposure time. Our camera won't do this.)
Stage 1: Specifying View Volume

- Lecture roadmap
 - mathematics of planar geometric projections
 - how to get from view specification to 2D image?
 - deriving 2D image from 3D view parameters is a hard problem
 - easier to take a picture from
 - canonical view volume (3D parallel projection cuboid)
 - canonical view position (camera at the origin, looking down the negative z-axis)
 - break into three stages:
 1. get parameters for view specification (covered in last lecture)
 2. transform from specified view volume into canonical view volume
 3. using canonical view, clip, project, and rasterize scene to make 2D image

Examples of View Volume [1]: Perspective (Frustum)

- Perspective Projection: Truncated Pyramid – Frustum

Up Vector

Width Angle

Look Vector

Height Angle

Position

Near Distance

Far Distance

- Look vector is the center line of the pyramid, the vector that lines up with "the barrel of the lens"
Examples of View Volume [2]:
Parallel (Cuboid)

- Orthographic Parallel Projection: Truncated View Volume – Cuboid

Viewing Transformation:
World (x, y, z) to Camera (u, v, w)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Arbitrary View Volume Too Complex

- We have specified arbitrary view with viewing parameters
- Problem: map arbitrary view specification to 2D image of scene. This is hard, both for clipping and for projection
- Solution: reduce to a simpler problem and solve
 - there is a view specification from which it is easy to take a picture. We'll call it the canonical view: from the origin, looking down the negative z-axis
 - think of the scene as lying behind a window and we're looking through that window

- parallel projection
- sits at origin: Position = (0, 0, 0)
- looks along negative z-axis: Look vector = (0, 0, -1)
- oriented upright:
 - Up vector = (0, 1, 0)
 - film plane extending from -1 to 1 in x and y

Note: Look vector along negative, not positive, z-axis is arbitrary but makes math easier; little choosing x ≤ r, y ≤ r

Stage 2: Normalizing to Canonical View Volume

- Goal: transform arbitrary view and world to canonical view volume, maintaining relationship between view volume and world, then take picture
 - for parallel view volume, transformation is affine: made up of linear transformations (rotations and scales) and translation/shift
 - in case of a perspective view volume, it also contains a non-affine perspective transformation that burns a frustum into a parallel view volume, a cuboid
 - composite transformation to transform arbitrary view volume to canonical view volume, named the normalizing transformation, is still a 4x4 homogeneous matrix that typically has an inverse
 - easy to clip against this canonical view volume; clipping planes are axis-aligned!
 - projection using canonical view volume is even easier: just omit z-coordinate
 - for oblique parallel projection, a shearing transform is part of composite transform, to “de-oblique” view volume

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Viewing Transformation ★ Normalizing Transformation

- Problem of “taking a picture” has now been reduced to problem of finding correct normalizing transformation
- Finding rotation component of normalizing transformation is hard.
 - Easier to find inverse of rotational component (as you will see in a few slides.)
- Digression:
 - find inverse of normalizing transformation
 - called the viewing transformation
 - turns the canonical view into the arbitrary view
 - \((x, y, z)\) to \((u, v, w)\)

Building Viewing Transformation From View Specification

- We know the view specification: Position, Look vector, and Up vector
- Need to derive an affine transformation from these parameters to translate and rotate the canonical view into our arbitrary view
 - the scaling of the film (i.e., the cross-section of the view volume) to make a square cross-section will happen at a later stage, as will clipping
- Translation is easy to find; we want to translate the origin to the point \(\text{Position}\); therefore, the translation matrix is:

\[
T(\text{Position}) = \begin{bmatrix}
1 & 0 & 0 & \text{Pos}_x \\
0 & 1 & 0 & \text{Pos}_y \\
0 & 0 & 1 & \text{Pos}_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Rotation is harder: how do we generate a rotation matrix from the viewing specifications to turn \(x, y, z\) into \(u, v, w\)?
 - a digression on rotation will help answer this
Rotation [1]

3 x 3 rotation matrices
- We learned about 3 x 3 matrices that "rigid-body rotate" the world (we're leaving out the homogeneous coordinate for simplicity).
- When they do, the three unit vectors that used to point along the x, y, and z axes are rotated to a new orientation.
- Because it is a rigid-body rotation:
 - resulting vectors are still unit length
 - resulting vectors are still perpendicular to each other
 - resulting vectors still satisfy the "right hand rule"
- Any matrix transformation with these three properties is a rotation about some axis by some amount!
- Let's call the three x-axis, y-axis, and z-axis-aligned unit vectors \(\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z \)
- Writing out:

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Rotation [2]

- Let's call our rotation matrix \(R \), and let's label its columns as \(\mathbf{v}_1, \mathbf{v}_2, \) and \(\mathbf{v}_3 \).
- When we multiply \(R \) by \(\mathbf{v}_1 \), what do we get?

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} \]

\(\mathbf{v}_1 \) is the first column of \(R \)

- Similarly for \(\mathbf{v}_2 \) and \(\mathbf{v}_3 \):

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} = \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} \]

\(\mathbf{v}_2 \) is the second column of \(R \)

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \]

\(\mathbf{v}_3 \) is the third column of \(R \)

- Therefore \(R = [u \ v \ w] \) where \(u, v, w \) are unit column vectors, will rotate the x, y, z axes into the u, v, w axes.
- And \(R^4 \) would rotate the u, v, w axes into the x, y, z axes, which is what we actually want.
- Therefore we first find \(R \) by computing \(u, v, w \) from the viewing specification parameters, and then we need to find an easy way of getting the inverse of \(R \).
Rotation [3]

- First, solve easier problem of finding the inverse of a rotation matrix.
- As we learned in the transformations lecture, for a rotation matrix with columns \(v_i \):
 - columns must be unit vectors: \(||v_i|| = 1 \)
 - columns are perpendicular: \(v_i \cdot v_j = 0 \) (\(i \neq j \))
- Therefore
 \[
 v_i \cdot v_i = 1, \quad \text{let } v_i = \begin{bmatrix} v_{i1} & v_{i2} & v_{i3} \end{bmatrix}^T, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
 \]
 \[K \cdot v_i = 0 \text{ (out)}\]
 \[v_i \cdot v_j = 0 \text{ (in)}\]
- We can write this matrix dot products as \(M^T M = I \)
 where \(M \) is a matrix whose rows are \(v_1 \), \(v_2 \), and \(v_3 \).
- Also, for matrices in general, \(M^{-1} M = I \) (actually, \(M^{-1} \) exists only for “well-behaved” matrices).
- Therefore, for rotation matrices, we have just shown that \(M^{-1} \) is simply \(M^T \)
 \(M^T M = I \quad \land \quad M^{-1} M = I \implies M^T = M^{-1} \)
- \(M^T \) is trivial to compute, \(M^{-1} \) takes considerable work.
 Big win!

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
http://bit.ly/hISf
Reused with permission.

Rotation [4]

Summary

- If \(M \) is a rotation matrix, then its columns are pairwise perpendicular and have unit length.
- Inversely, if the columns of a matrix are pairwise perpendicular and have unit length, then the matrix is a rotation.
- For such a matrix,
 \[
 M^T M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
 \]
- Most importantly, then \(M^T = M^{-1} \) and this will help us build the normalizing transformation from the easier to find viewing transformation.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
http://bit.ly/hISf
Reused with permission.
Construction of Orientation Matrix

- Know how to invert a rotation matrix, but how do we build it from the viewing specification to normalize the camera-space unit vector axes \((u, v, w)\) located at the origin into the world-space axes \((x, y, z)\).
 - rotation matrix \(M\) will turn \((x, y, z)\) into \((u, v, w)\) and has columns \((u, v, w)\) - viewing matrix
 - conversely, \(M^T\) turns \((u, v, w)\) into \((x, y, z)\), \(M^T\) has rows \((u, v, w)\) - normalization matrix
- Reduces the problem of finding the correct rotation matrix into finding the correct perpendicular unit vectors \(u, v, w\).
- Restatement of rotation problem:
 Using Position, Look vector, and Up vector, compute viewing rotation matrix \(M\) with columns \(u, v, w\), then use its inverse, the transpose \(M^T\), with row vectors \(u, v, w\) to get the normalization rotation matrix.

Finding \((u, v, w)\) from Position, Look, and Up [1]

- We know that we want the \((u, v, w)\) axes to have the following properties:
 - our arbitrary Look Vector will lie along the negative \(w\)-axis
 - a projection of the Up Vector into the plane defined by the \(w\)-axis as its normal will lie along the \(v\)-axis
 - The \(u\)-axis will be mutually perpendicular to the \(v\) and \(w\)-axes, and will form a right-handed coordinate system
- Plan of attack: first find \(w\) from Look, then find \(v\) from the Up and \(w\) vector, then find \(u\) as a normal to the plane defined by \(w\) and \(v\).

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Finding \((u, v, w)\) from Position, Look, and Up [2]

Finding \(w\)

- Finding \(w\) is easy. Look vector in canonical volume lies on -z. Since \(z\) maps to \(w\), \(w\) is a normalized vector pointing in the opposite direction from our arbitrary Look vector.

\[
\begin{align*}
\mathbf{w} &= -\frac{\mathbf{look}}{\|\mathbf{look}\|} \\
\end{align*}
\]

- Note that \(Up\) and \(w\) define a plane, and that \(u\) is a normal to that plane, and that \(v\) is a normal to the plane defined by \(w\) and \(u\).

Finding \((u, v, w)\) from Position, Look, and Up [3]

Finding \(v\)

- Problem: find a vector, \(v\), perpendicular to \(w\).
- Solution: project out the \(w\) component of the \(Up\) vector and normalize.

\[
\begin{align*}
\mathbf{v} &= \mathbf{Up} - \left(\mathbf{w} \cdot \mathbf{Up}\right)\mathbf{w} \\
\mathbf{v} &= \frac{\mathbf{v}}{\|\mathbf{v}\|} \\
\end{align*}
\]

- \(w\) is unit length, but \(Up\) vector might not be unit length or perpendicular to \(w\), so we have to remove the \(w\) component and then normalize.
- By removing the \(w\) component from the \(Up\) vector, the resulting vector is the component of \(Up\) in a direction perpendicular to \(w\).
- To create the orthogonal coordinate frame of the camera we need a third vector.
Finding \((u, v, w)\) from Position, Look, and Up [4]

Finding \(u\)

- We can use cross-product, but which one should we use?
 - \(w \times v\) and \(v \times w\) are both perpendicular to the plane, but in different directions.
- Answer: cross-products are right-handed, so use \(v \times w\) to create a right-handed coordinate frame

\[
\begin{align*}
 u &= \frac{v \times w}{\|v \times w\|} \\
 w &= \frac{\text{Look}}{\|\text{Look}\|} \\
 v &= \frac{U_p - (w \cdot U_p) w}{\|U_p - (w \cdot U_p) w\|} \\
 H &= \frac{v \times w}{\|v \times w\|}
\end{align*}
\]

- As a reminder, the cross product of two vectors \(a\) and \(b\) is:

\[
a \times b = \begin{bmatrix}
 a_2b_3 - a_3b_2 \\
 a_3b_1 - a_1b_3 \\
 a_1b_2 - a_2b_1
\end{bmatrix}
\]

Finding \((u, v, w)\) from Position, Look, and Up [5]

To summarize

- The viewing transformation is now fully specified
 - knowing \(u, v,\) and \(w\), we can rotate the canonical view into the user-specified orientation
 - we already know how to translate the view

Important Note: we don’t actually apply the forward viewing transformation. Instead, the inverse viewing transformation, namely the normalizing transformation, will be used to map the arbitrary view into the canonical view.
Transmuting to Canonical View

The Viewing Problem for Parallel Projection
- Given a parallel view specification and vertices of a bunch of objects, we use the normalization transformation, i.e., the inverse viewing transformation, to normalize the view volume to a cuboid at the origin, then clip, and then project those vertices by ignoring their z values.

Note: it's a cuboid, not a cube (transformation arithmetic and clipping are easier).

The Viewing Problem for Perspective Projection
- Normalize the perspective view specification to a unit frustum at the origin looking down the -z axis; then transform the perspective view volume into a parallel (cuboid) view volume, simplifying both clipping and projection.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Normalizing View Volume: Overview

The Parallel Case
- Decomposes into multiple steps
- Each step defined by a matrix transformation
- The product of these matrices defines the whole transformation in one large, composite matrix.
 - The steps are:
 - move the eye/camera to the origin
 - transform the view so that (u, v, w) is aligned with (x, y, z)
 - adjust the scales so that the view volume fits between -1 and 1 in x and y, the back clip plane lies at z = -1, the front clip plane at z = 0.

The Perspective Case
- Same as parallel, but add one more step:
 - distort pyramid to cuboid to achieve perspective distortion to align the front clip plane with z = 0.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Normalizing View Volume:

Step 1

Move the eye to the origin

- We want a matrix to transform $(\text{Pos}_x, \text{Pos}_y, \text{Pos}_z)$ to $(0, 0, 0)$
- Solution: it's just the inverse of the viewing translation transformation:
 $$(t_x, t_y, t_z) = (-\text{Pos}_x, -\text{Pos}_y, -\text{Pos}_z)$$
- We will take the matrix:
 $$T_{\text{view}} =
 \begin{bmatrix}
 1 & 0 & -\text{Pos}_x \\
 0 & 1 & -\text{Pos}_y \\
 0 & 0 & 1
 \end{bmatrix}$$
- and we will multiply all vertices explicitly (and the camera implicitly) to preserve the relationship between camera and scene, i.e., for all vertices p
 $$p' = T_{\text{view}} p$$
- This will move Position (the "eye point") to $(0, 0, 0)$

Step 2

- Position now at origin

But we're hardly done! Still need to:

- align orientation with x,y,z world coordinate system
- normalize proportions of the view volume

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Normalizing View Volume:
Step 3

Rotate the view and align with the world coordinate system

- We found out that the view transformation matrix \(M \) with columns \(u, v, w \) would rotate the \(x, y, z \) axes into the \(u, v, w \) axes.
- We now apply the inverse (transpose) of that rotation, \(M^T \), to the scene. That is, a matrix with rows \(u, v, w \) will rotate the axes \(u, v, w \) into the axes \(x, y, z \).
- Define \(M_{\text{view}} \) to be this rotation matrix transpose.
- Now every vertex in the scene (and the camera implicitly) is multiplied by the composite matrix

\[
M_{\text{view}} M_{\text{trans}}
\]

We’ve translated and rotated, so that the Position is at the origin, and the \((u, v, w)\) axes and the \((x, y, z)\) axes are aligned.

Current situation

Look

Normalizing View Volume:
Step 4

- We’ve gotten things more or less to the right place, but the proportions of the view volume need to be normalized:
 - last affine transformation: scaling
- Need to be normalized to a square cross-section 2-by-2 units
 - why is that preferable to the unit square?
- Adjust so that the corners of far clipping plane eventually lie at \((±1, ±1, ±1)\)
- One mathematical operation works for both parallel and perspective view volumes
- Imagine vectors emanating from origin passing through corners of far clipping plane. For perspective view volume, these are edges of volume. For parallel, these lie inside view volume
- First step: force vectors into 45-degree angles with \(x \) and \(y \) axes
- We’ll do this by scaling in \(x \) and \(y \) axes

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Normalizing View Volume: Step 5

Scaling Clipping Planes

- Scale independently in x and y: looking down from above, we see this:

![Diagram showing scaling in x and y]

- Want to scale in x to make angle 90 degrees
- Need to scale in x by
 \[
 \frac{1}{\tan(\frac{\theta_x}{2})} = \cot(\frac{\theta_x}{2})
 \]
- Similarly in y

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Normalizing View Volume: Step 6

The xy scaling matrix

- The scale matrix we need looks like this:

\[
S_{xy} = \begin{bmatrix}
\cot(\frac{\theta_x}{2}) & 0 & 0 \\
0 & \cot(\frac{\theta_y}{2}) & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

- So our current composite transformation looks like this:

\[
S_{xy}M_{rot}T_{trans}
\]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Normalizing View Volume: Step 7

One more scaling matrix

- Relative proportions of view volume planes are now correct, but the back clipping plane is probably lying at some $z = -1$, and we want all points inside view volume to have $0 \leq z \leq 1$
- Need to shrink the back (far) plane to be at $z = -1$
- The z distance from the eye to that point has not changed: it's still far (distance to far clipping plane)
- If we scale in z only, proportions of volume will change; instead we scale uniformly:

\[
S_{fr} = \begin{bmatrix}
\frac{1}{\text{far}} & 0 & 0 & 0 \\
0 & \frac{1}{\text{far}} & 0 & 0 \\
0 & 0 & 1 & \text{far} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Normalizing View Volume: Step 8

The Current Situation

- Far plane at $z = -1$.
- Near clip plane now at $z = -k$ (note $k > 0$)
Normalizing View Volume: Results

- Our near-final composite normalizing transformation for canonical perspective view volume:

 \[S_{far}S_{xy}M_{rot}T_{trans} \]

 - \(T_{trans} \) takes the camera’s Position and moves the camera to the world origin
 - \(M_{rot} \) takes the Look and Up vectors and orients the camera to look down the -z axis
 - \(S_{xy} \) takes \(\theta_x, \theta_y \) and scales the clipping planes so that the corners are at \((\pm 1, \pm 1) \)
 - \(S_{far} \) takes the far clipping plane and scales it to lie on the \(z = -1 \) plane

Perspective Transformation [1]

- We’ve put the perspective view volume into canonical position, orientation and size
- Let’s look at a particular point on the original near clipping plane lying on the Look vector:

 \[p = \text{Position} + \text{near} \cdot \text{Look} \]

 It gets moved to a new location

 \[p' = S_{far}S_{xy}M_{rot}T_{trans}P \]

 on the negative z-axis, say

 \[p' = (0 \ \ 0 \ \ -k) \]
Perspective Transformation [2]

- What is the value of k? Trace through the steps. p first gets moved to just \(\text{near} \cdot \text{Look} \).

- This point is then rotated to \((\text{near})(-\varepsilon) \).

- The \(xy \) scaling has no effect, and the \(\text{far} \) scaling changes this to \(\left(\begin{array}{c} \text{NEAR} \\ \text{FOR} \end{array} \right) \).

Perspective Transformation [3]

- Transform points in standard perspective view volume between \(-k\) and \(-1\) to standard parallel view volume.

- "z-buffer," used for visible surface calculation, needs \(z \) values to be \([0,1]\), not \([-1,0]\). Perspective transformation must therefore transform scene to positive range \(0 \leq z \leq 1 \).

- The matrix that does this:

\[
D = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & k & 0 \\
0 & k & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- (Remember that \(0 < k < 1 \ldots \)).

- Why not originally align camera to \(+z \) axis?

 - Choice is perceptual, we think of looking through a display device into the scene that lies behind window.
Perspective Transformation [4]

- Take a typical point prior to perspective transform \(p = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \) and rewrite it as

\[
\begin{bmatrix}
\frac{x}{y} \\
\frac{y}{z} \\
\frac{z}{1}
\end{bmatrix}
\]

- \(0 \leq d \leq 1 - k \); \(p \) is parameterized by distance along frustum
 - when \(d = 0 \), \(p \) is on near clip plane; when \(d = (1-k) \), \(p \) is on far clip plane
 - depending on \(x \), \(y \), and \(z \), \(p \) may or may not actually fall within frustum

- Apply \(D \) (from previous slide) to \(p \) to get new point \(p' \)

\[
\begin{bmatrix}
x & y & z & d \\
0 & 0 & 0 & 1 \\
-k & -d & 1 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{x}{y} \\
\frac{y}{z} \\
\frac{z}{1}
\end{bmatrix}
\]

- Note: \(w - k + d = 1 \) so in the last step we must divide through by \(k \)!!
 - this causes \(x \) and \(y \) to be "perspectivized", with points closer to the near clip plane being scaled up the most
 - this also transforms \(z \), but \(z \) is tested out when we project onto the film plane so it ultimately doesn’t matter
 - understanding homogeneous coordinates is essential to graphics
 - Try values of \(d, 0, 1, k, \frac{1}{0}, 1 \), 1

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Perspective Transformation [5]

- Again consider

\[
\begin{bmatrix}
\frac{x(k+d)}{y(k+d)} \\
\frac{y(k+d)}{z(k+d)} \\
\frac{-d(z(k+d))}{1}
\end{bmatrix}
\]

- What happens to \(x \) and \(y \) when \(d \) gets very large?
 - \(x \to 0 \) and \(y \to 0 \) as \(d \to \infty \)
 - note: when we let \(d \) increase beyond \((1-k)\), \(p \) is now beyond the frustum (such lines will be clipped)

- This result provides perspective foreshortening: parallel lines converge to a vanishing point

- What happens when \(d \) is negative?
 - now \(p \) lies in front of the near clip plane, possibly behind the eye point
 - result: when \((k+d) \) becomes negative, the signs of \(x \) and \(y \) will be flipped: text would be upside-down and backwards
 - you won’t see these points because they are clipped

- What happens after perspective transformation?
 - Answer: parallel projection is applied to determine location of points onto the film plane
 - projection is easy: drop \(z \)
 - however, we still need to keep the \(z \) ordering intact for visible surface determination

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Perspective Transformation: End Result

- Final transformation:
 \[p' = D_{\text{persp}}S_{\text{frac}}S_{y}M_{\text{rot}}T_{\text{trans}}p \]

- Note that once the viewing parameters (Position, Up vector, Look vector, Height angle, Aspect ratio, Near, and Far) are known, the matrices
 \[D_{\text{persp}}, S_{\text{frac}}, S_{y}, M_{\text{rot}}, T_{\text{trans}} \]
 can all be computed and multiplied together to get a single 4x4 matrix that is applied to all points of all objects to get them from "world space" to the standard parallel view volume.

- This is a huge win for homogeneous coordinates

NOTE: Slide nomenclature differs from the book:
- k is -c in the book
- near is n, far is f

Stage 3: Making 2-D Image

- So far we’ve
 - Specified the view volume
 - Transformed from the specified view volume into the canonical view volume

- Last stage involves
 - Clipping
 - Projecting

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Clipping

- We said that taking the picture from the canonical view would be easy: final steps are clipping and projecting onto the film planes.
- Need to clip scene against sides of view volume.
- However, we’ve normalized our view volume into an axis-aligned cuboid that extends from -1 to 1 in x and y and from 0 to 1 in z.

\[
\begin{align*}
&(-1,1,1) \\
&(1,1,0) \\
&(-1,-1,0) \\
&(1,-1,1) \\
&(-1,-1,1)
\end{align*}
\]

- Front clip plane transforms to here.
- Back clip plane transforms to the x=1 plane.
- Note: This is the flipped (in z) version of the canonical view volume.
- Clipping is easy! Test x and y components of vertices against +/-1, and z components against 0 and 1.

Final Projection: Viewport Mapping

- Can make an image by taking each point and ignoring z to project it onto the xy-plane.
- A final for x, y plane.
- Entire problem can be reduced to a composite matrix multiplication of vertices, clipping, and a final matrix multiplication to produce screen coordinates.
- Final composite matrix (CTM) is composite of all modeling (instance) transformations (CM7M) accumulated during scene graph traversal from root to leaf, composited with the final composite normalizing transformation N applied to the root/world coordinate system:

\[
\begin{align*}
N &= D_{\text{persp}} S_{\text{fo}} S_{\text{xy}} M_{\text{ref}} T_{\text{trans}} \\
\text{CTM} &= N \cdot \text{CM7M} \\
P' &= \text{CTM} \cdot P & \text{for every vertex } P \text{ defined in its own coordinate system} \\
P_{\text{screen}} &= 512 \cdot P' + 1 & \text{for all clipped } P'
\end{align*}
\]

1. Note that these functions are not exactly correct since it’s on a step 1. Then we will get x or y to be 0.75 which is out of range, we need to map this case to a value that is not exactly correct.

Fixed Function Graphics Pipeline: Composite Transformation Matrix

- Entire problem can be reduced to a composite matrix multiplication of vertices, clipping, and a final matrix multiplication to produce screen coordinates.
- Final composite matrix (CTM) is composite of all modeling (instance) transformations (CMTM) accumulated during scene graph traversal from root to leaf, composited with the final composite normalizing transformation N applied to the root/world coordinate system:
 1) \(N = D_{\text{persp}}S_{\text{far}}S_{\text{xy}}M_{\text{rot}}T_{\text{trans}} \)
 2) \(\text{CTM} = N \cdot \text{CMTM} \)
 3) \(P' = \text{CTM} \cdot P \) for every vertex \(P \) defined in its own coordinate system
 4) \(P_{\text{screen}} = 512 \cdot P' + 1 \) for all clipped \(P' \)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Putting It All Together: Coordinate Spaces & Transformations

(See Eberly 2e § 2.3.2 – 2.3.7, pp. 48-66, especially p. 58)

1. model coordinates / object coordinates
2. world coordinates / scene coordinates
3. camera coordinates / eye coordinates
4. (optional) view coordinates / clip coordinates
5. normalized device coordinates (NDC)
6. screen coordinates

\[H_{\text{model}}: \text{modelview transformation} \]

Normalizing transformation: \(X_{\text{world}} \rightarrow X_{\text{ndc}} \)

\[H_{\text{view}}: \text{“view matrix” (really NT!)} \]
\[H_{\text{proj}}: \text{projection matrix} \]
\[\frac{1}{W}: \text{perspective division} \]

\[H_{\text{window}}: \text{window matrix} \]
(aka viewport transformation)
Summary

- Last Time: View Volume Specification and Viewing Transformation
 - View volumes: ideal vs. approximated
 - Specifying view volume in CG: Look and Up vectors
 - Aspect ratio, view angle, front/back clipping planes, focal length
- Today
 - Viewing transformation (NT)
 - Rotation
 - Finding camera coordinates \((u, v, w)\) from Look, Up
 - Normalizing transformation (NT)
 - Perspective transformation \(D\)
 - Overall CTM of fixed-function pipeline
 - Intro to clipping
- Coming Week
 - Lab: OpenGL basics
 - Drawing lines, polygons
 - Parametric clipping

Terminology

- Today: View Volumes, Viewing Transformation
 - Parallel projection (cuboid) view volume vs. perspective projection frustum
 - Front/back (near/far) clipping planes
 - World coordinates (canonical): \((x, y, z)\)
 - User coordinates (arbitrary): \((u, v, w)\), aka \((u, v, n)\) or \((R, U, D)\) in Eberly
 - Perspective transformation \(D\): “morphs” frustum into cuboid
 - Normalizing transformation: inverse of viewing transformation (easier)
- Other Topics
 - Clipping
 - Given view volume
 - Problem of determining visible elements of scene
 - Cumulative Transformation Matrices (CTM)
 - Translation, Rotation, Scaling (TRS)
 - Used to map arbitrary view to canonical view
 - Then “ready to take picture”