

Lecture 6 of 41

Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course pages: http://bit.ly/eVizrE
Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: Sections 2.5.1, 3.1, Eberly 2e – see http://bit.ly/ieUq45
This week: Brown CS123 slides on Scan Conversion – http://bit.ly/hfbF0D
Wayback Machine archive of Brown CS123 slides: http://bit.ly/gAhJbh

6

CIS 536/636
Introduction to Computer Graphics

Lecture 6 of 41

Computing & Information Sciences Kansas State Universitu

Lecture Outline

- Reading for Last Class: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2 e
- Reading for Today: §2.5.1, 3.1 Eberly 2°
- Reading for Next Class: §2.3.5, 2.4, 3.1.3, Eberly 2^e
- Last Time: View Volume Specification and Viewing Transformation
- CG Basics: First of Three Tutorials on OpenGL (Three Parts)
 - * 1. OpenGL & GL Utility Toolkit (GLUT) V. Shreiner
 - * 2. Basic rendering V. Shreiner
 - * 3. 3-D viewing setup E. Angel
- Today: Scan Conversion (aka Rasterization)
 - * Lines
 - Incremental algorithm
 - > Bresenham's algorithm & midpoint line algorithm
 - * Circles and Ellipses
- Next Time: More Scan Conversion & Intro to Clipping

Where We Are

Lecture	Topic	Primary Source(s)
0	Course Overview	Chapter 1, Eberly 2 ^e
1	CG Basics: Transformation Matrices; Lab 0	Sections (§) 2.1, 2.2
2	Viewing 1: Overview, Projections	§ 2.2.3 – 2.2.4, 2.8
3	Viewing 2: Viewing Transformation	§ 2.3 esp. 2.3.4; FVFH slides
4	Lab 1a: Flash & OpenGL Basics	Ch. 2, 16 ¹ , Angel Primer
5	Viewing 3: Graphics Pipeline	§ 23 esp 237:26 27
6	Scan Conversion 1: Lines, Midpoint Algorithm	§ 2.5.1, 3.1; FVFH slides
7	Viewing 4: Clipping & Culling; Lab 1b	§ 2.3.5, 2.4, 3.1.3
8	Scan Conversion 2: Polygons, Clipping Intro	§ 2.4, 2.5 esp. 2.5.4, 3.1.6
9	Surface Detail 1: Illumination & Shading	§ 2.5, 2.6.1 – 2.6.2, 4.3.2, 20.2
10	Lab 2a: Direct3D / DirectX Intro	§ 2.7, Direct3D handout
11	Surface Detail 2: Textures; OpenGL Shading	§ 2.6.3, 20.3 – 20.4, Primer
12	Surface Detail 3: Mappings; OpenGL Textures	§ 20.5 – 20.13
13	Surface Detail 4: Pixel/Vertex Shad.; Lab 2b	§ 3.1
14	Surface Detail 5: Direct3D Shading; OGLSL	§ 3.2 – 3.4, Direct3D handout
15	Demos 1: CGA, Fun; Scene Graphs: State	§ 4.1 – 4.3, CGA handout
16	Lab 3a: Shading & Transparency	§ 2.6, 20.1, Primer
17	Animation 1: Basics, Keyframes; HW/Exam	§ 5.1 - 5.2
	Exam 1 review; Hour Exam 1 (evening)	Chapters 1 - 4, 20
18	Scene Graphs: Rendering; Lab 3b: Shader	§ 4.4 - 4.7
19	Demos 2: SFX; Skinning, Morphing	§ 5.3 - 5.5, CGA handout
20	Demos 3: Surfaces; B-reps/Volume Graphics	§ 10.4, 12.7, Mesh handout

Lightly-shaded entries denote the due date of a written problem set, heavily-shaded entries, that of a machine problem (programming assignment); blue-shaded entries, that of a paper review; and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.

Introduction to Computer Graphics

Lecture 6 of 41

Computing & Information Sciences Kansas State University

Review: CTM for "Polygons-to-Pixels" Pipeline

- Entire problem can be reduced to a composite matrix multiplication of vertices, clipping, and a final matrix multiplication to produce screen coordinates.
- Final composite matrix (CTM) is composite of all modeling (instance) transformations (CMTM) accumulated during scene graph traversal from root to leaf, composited with the final composite normalizing transformation N applied to the root/world coordinate system:

1)
$$N = D_{persp} S_{far} S_{xy} M_{rot} T_{trans}$$

$$2) CTM = N \cdot CMTM$$

3)
$$P' = CTM \cdot P \quad \mbox{for every vertex P defined in its own coordinate system}$$

4)
$$P_{screen} = 512 \cdot P' + 1$$
 for all clipped P'

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Review: Lab 1a & NeHe Tutorials on GameDev

NeonHelium tutorials: http://nehe.gamedev.net Mesa home page: http://www.mesa3d.org

- (20%) Mesa setup. Log into your Gentoo Linux account in Nichols 128, the Linux Lab. Go to the NeHe site and follow the "Setting up OpenGL in MacOS" to create a GL window. As in MacOS X, Gentoo keeps its GL include files in /usr/include/GL. Name your program lab1_1.c and include it in your lab assignment submission. Take a screen shot of the window and save it in GIMP as lab1 1.jpg.
- (20%) Polygon rasterization (scan conversion). Follow Lesson 02 to draw a 2-D polygon and shade it using smooth (Gouraud) and constant (flat) shading. Turn in lab1 2.c and lab1_2.jpg.
- 3. (20%) Modelview transformation: 3-D Rotation of 2-D objects. Follow Lesson 03 to rotate the flat polygons and then render them. Turn in lab1 3.c and lab1 3.jpg.
- 4. (20%) Modelview transformation: 3-D Rotation of 3-D objects. Follow Lesson 04 to draw 3-D polyhedra and rotate them. Turn in lab1 4.c and lab1 4.jpg.
- 5. (20%) XWindows. Repeat Lesson 04 from a notebook computer or PC running Mac OS X, Windows XP or Windows Vista. Turn in lab1_5.jpg.

Lecture 6 of 41

Review: Coordinate Spaces & Transformation Matrices

(See Eberly 2e § 2.3.2 – 2.3.7, pp. 48-66, especially p. 58)

1. model coordinates / object coordinates

2. world coordinates / scene coordinates

3. camera coordinates / eye coordinates

4. (optional) view coordinates / clip coordinates

normalized device coordinates (NDC)

screen coordinates

 $\to (H_{\text{view}})$

X_{world} X_{view} X_{clip} $\to (H_{\text{proj}})$

→ (perspective division)

Hworld: modelview transformation

Normalizing transformation: $X_{world} \rightarrow X_{ndc}$

"view matrix" (really NT!)

projection matrix perspective division

Hwindow: window matrix

(aka viewport transformation)

Scan Converting Lines

Line Drawing

- Draw a line on a raster screen between two points
- Why is this a difficult problem?
 - What is "drawing" on a raster display?
 - What is a "line" in raster world?
 - Efficiency and appearance are both important

Problem Statement

 Given two points P and Q in XY plane, both with integer coordinates, determine which pixels on raster screen should be on in order to make picture of a unit-width line segment starting at P and ending at Q

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Lecture 6 of 41

What Is Scan Conversion?

- Final step of rasterisation (process of taking geometric shapes and converting them into an array of pixels stored in the framebuffer to be displayed)
- Takes place after clipping occurs
- All graphics packages do this at the end of the rendering pipeline
- Takes triangles and maps them to pixels on the screen
- Also takes into account other properties like lighting and shading, but we'll focus first on algorithms for line scan conversion

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Finding Next Pixel

Special case:

- Horizontal Line: Draw pixel P and increment x coordinate value by 1 to get next pixel.
- Vertical Line: Draw pixel P and increment y coordinate value by 1 to get next pixel.
- Diagonal Line: Draw pixel P and increment both x and y coordinate by 1 to get next pixel.
- What should we do in general case?
 - Increment x coordinate by 1 and choose point closest to line.
 - ▶ But how do we measure "closest"?

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Introduction to Computer Graphi

Lecture 6 of 41

Computing & Information Sciences

Kansas State University

Vertical Distance

- Why can we use vertical distance as measure of which point is closer?
 - ... because vertical distance is proportional to actual distance

- Similar triangles show that true distances to line (in blue) are directly proportional to vertical distances to line (in black) for each point
- > Therefore, point with smaller vertical distance to line is closest to line

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

1

Strategy 1: Incremental Algorithm [1]

Basic Algorithm

- \blacktriangleright Find equation of line that connects two points P and Q
- ▶ Starting with leftmost point , increment x_i by 1 to calculate $y_i = m * x_i + B$ where m = slope, B = y intercept
- ▶ Draw pixel at $(x_i, \text{Round}(y_i))$ where Round (y_i) = Floor $(0.5 + y_i)$

Incremental Algorithm:

- > Each iteration requires a floating-point multiplication
 - Modify algorithm to use deltas
 - $(y_{i+1} y_i) = m * (x_{i+1} x_i) + B$
 - $y_{i+1} = y_i + m * (x_{i+1} x_i)$
 - If $\Delta x = 1$, then $y_{i+1} = y_i + m$
- ▶ At each step, we make incremental calculations based on preceding step to find next *y* value

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

CIS 536/636

Introduction to Computer Graphic

Lecture 6 of 41

Computing & Information Sciences

Kansas State University

Strategy 1: Incremental Algorithm [2]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

CIS 536/636

Lecture 6 of 41

Computing & Information Science:

Strategy 1: Incremental Algorithm [3] Example Code & Problems

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

CIS 536/636 Introduction to Computer Graph Lecture 6 of 41

Computing & Information Science: Kansas State University

Strategy 2: Midpoint Line Algorithm [1]

- ▶ Assume that line's slope is shallow and positive (0 < slope < 1); other slopes can be handled by suitable reflections about principle axes
- Call lower left endpoint (x_0, y_0) and upper right endpoint (x_1, y_1)
- Assume that we have just selected pixel P at (x_p, y_p)
- Next, we must choose between pixel to right (E pixel), or one right and one up (NE pixel)
- Let *Q* be intersection point of line being scan-converted and vertical line $x = x_P + 1$

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

CIS 536/636

Lecture 6 of 41

Computing & Information Science

Strategy 2: Midpoint Line Algorithm [2]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Introduction to Computer Graphics

Lecture 6 of 41

Computing & Information Sciences

Kansas State University

Strategy 2: Midpoint Line Algorithm [3]

- Line passes between E and NE
- Point that is closer to intersection point Q must be chosen
- Observe on which side of line midpoint M lies:
 - \blacktriangleright E is closer to line if midpoint M lies above line, i.e., line crosses bottom half
 - NE is closer to line if midpoint M lies below line, i.e., line crosses top half
- Error (vertical distance between chosen pixel and actual line) is always
 5
- Algorithm chooses NE as next pixel for line shown
- Now, need to find a way to calculate on which side of line midpoint lies

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

LIS 536/636 Introduction to Computer Graphic Lecture 6 of 41

Computing & Information Sciences

17

Line Equations and Properties

Line equation as function f(x): $y = mx + B = \frac{dy}{dx}x + B$

Line equation as implicit function: f(x, y) = ax + by + c = 0

for coefficients a, b, c, where $a, b \neq 0$

So from above,

$$y \cdot dx = dy \cdot x + B \cdot dx$$
$$dy \cdot x - y \cdot dx + B \cdot dx = 0$$
$$\therefore a = dy, b = -dx, c = B \cdot dx$$

Properties (proof by case analysis):

- $f(x_m, y_m) = 0$ when any point M is on line
- $f(x_m, y_m) < 0$ when any point M is above line
- $f(x_m, y_m) > 0$ when any point M is below line
- Our decision will be based on value of function at midpoint M at $(x_P + 1, y_P + .5)$

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

CIS 536/636

Introduction to Computer Graphics

Lecture 6 of 41

Computing & Information Sciences Kansas State Universitu

1

Decision Variable

Decision Variable d:

- We only need sign of $f(x_p + 1, y_p + .5)$ to see where line lies, and then pick nearest pixel
- $d = f(x_p + 1, y_p + .5)$
 - if d > 0 choose pixel NE
 - if d < 0 choose pixel E
 - if d = 0 choose either one consistently

How do we incrementally update d?

- On basis of picking E or NE, figure out location of M for that pixel, and corresponding value d for next grid line
- \blacktriangleright We can derive d for the next pixel based on our current decision

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

East Neighbor (E) Case

Increment M by one in x direction

$$d_{new} = f(x_P + 2, y_P + .5)$$

= $a(x_P + 2) + b(y_P + .5) + c$

$$d_{old} = a(x_P + 1) + b(y_P + .5) + c$$

lacksquare $d_{new}-d_{old}$ is the incremental difference ΔE

$$d_{new} = d_{old} + a$$

 $\Delta E = a = dy$ (2 slides back)

We can compute value of decision variable at next step incrementally without computing F(M) directly

$$d_{new} = d_{old} + \Delta E = d_{old} + dy$$

- lacksquare ΔE can be thought of as correction or update factor to take d_{old} to d_{new}
- It is referred to as forward difference

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

CIS 536/636

ntroduction to Computer Graphics

Lecture 6 of 41

Computing & Information Sciences Kansas State Universitu

20

Northeast Neighbor (NE) Case

Increment M by one in both *x* and *y* directions

$$d_{new} = f(x_P + 2, y_P + 1.5)$$

= $a(x_P + 2) + b(y_P + 1.5) + c$

$$d_{new} = d_{old} + a + b$$

$$\Delta NE = a + b = dx - dy$$

Thus, incrementally,

$$d_{new} = d_{old} + \Delta NE = d_{old} + dx - dy$$

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Midpoint Algorithm [1]: Forward Differences

- > At each step, algorithm chooses between 2 pixels based on sign of decision variable calculated in previous iteration.
- ▶ It then updates decision variable by adding either ΔE or ΔNE to old value depending on choice of pixel. Simple additions only!
- First pixel is first endpoint (x_0, y_0) , so we can directly calculate initial value of d for choosing between E and NE

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Lecture 6 of 41

Midpoint Algorithm [2]: Initialization and Normalization

- First midpoint for first $d = d_{start}$ is at $(x_0 + 1, y_0 + .5)$
- $f(x_0 + 1, y_0 + .5)$
- $= a(x_0 + 1) + b(y_0 + .5) + c$
- $= a * x_0 + b * y_0 + a + \frac{b}{2} + c$ = f(x_0, y_0) + a + \frac{b}{2}
- But (x_0, y_0) is point on line and $f(x_0, y_0) = 0$
- Therefore, $d_{start} = a + \frac{b}{2} = dy \frac{dx}{2}$
 - use d_{start} to choose second pixel, etc.
- To eliminate fraction in d_{start} :
 - redefine f by multiplying it by 2; f(x,y) = 2(ax + by + c)
 - This multiplies each constant and decision variable by 2, but does not change sign

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Bresenham's Midpoint Line Algorithm: Pseudocode

Adapted from slides © 1997 – 2010 van Dam *et al.*, Brown University http://bit.ly/hiSt0f Reused with permission.

US 336/636 Introduction to Computer G Lecture 6 of 41

Computing & Information Sciences Kansas State University

Preview: Drawing Circles, Versions1 & 2

Version 1: really bad

For x from -R to R:

$$y = \sqrt{R * R - x * x};$$

Pixel (round(x), round(y));

Pixel (round(x), round(-y));

Version 2: slightly less bad

For x from 0 to 360:

Pixel (round
$$(R * \cos(x))$$
, round $(R * \sin(x))$);

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

US 536/636
Introduction to Computer Graphic

Lecture 6 of 41

Computing & Information Sciences

Preview: Drawing Circles, Version 3

- Symmetry: If $(x_0 + a, y_0 + b)$ is on circle - also $(x_0 \pm a, y_0 \pm b)$ and $(x_0 \pm b, y_0 \pm a)$, hence 8-way symmetry.
- Reduce the problem to finding the pixels for 1/8 of the circle

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Preview: Using The Symmetry

- Scan top right 1/8 of circle of radius R
- Circle starts at $(x_0, y_0 + R)$
- Let's use another incremental algorithm with decision variable evaluated at midpoint

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission.

Lecture 6 of 41

27

Summary

- Lab 1a: Based on First of Three Tutorials on OpenGL (Three Parts)
- Lecture 5: Viewing 3 of 4 Graphics Pipeline (§2.3.2 2.3.7, pp. 48-66)
- See Also: CG Basics 1-2
 - * CG Basics 1: Mathematical Foundations
 - * CG Basics 2: OpenGL Primer 1 of 3 (in greater detail)
- Today: Scan Conversion (aka Rasterization)
 - * Lines
 - > Incremental algorithm
 - > Symmetries (8) and reduction to two-case analysis: E vs. NE
 - Decision variable and method of forward differences
 - > (Bresenham's) midpoint line algorithm
 - * Circles and Ellipses
- Next Time: More Scan Conversion & Intro to Clipping
 - * Polygons: scan line interpolation
 - * Clipping basics: 2-D problem definition and examples

Introduction to Computer Graphics

Lecture 6 of 41

Computing & Information Sciences Kansas State University

Terminology

- Picture elements (pixels)
- Scan Conversion (aka Rasterization)
 - * Given: geometric object (e.g., line segment, projected polygon)
 - * Decide: what pixels to light (turn on; later, color/shade)
 - * Basis: what part of pixels crossed by object
- Issues (Reasons why Scan Conversion is Nontrivial Problem)
 - * Aliasing (e.g., jaggies) discontinuities in lines
 - * Cracks: discontinuities in "polygon" mesh
- Line Drawing
 - * Incremental algorithm uses rounding, floating point arithmetic
 - * Forward differences precalculated amounts to add to running total
 - * Midpoint line algorithm uses forward differences
 - > For lines: Bresenham's algorithm
 - > For circles and ellipses

C15 536/636 Introduction to Computer Graphics Lecture 6 of 41

Computing & Information Sciences