Scan Conversion 1 of 2:
Midpoint Algorithm for Lines and Ellipses

William H. Hsu
Department of Computing and Information Sciences, KSU

Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Sections 2.5.1, 3.1, Eberly 2e – see http://bit.ly/ieUq45
This week: Brown CS123 slides on Scan Conversion – http://bit.ly/hfbF0D
Lecture Outline

- Reading for Last Class: Section 2.3 (esp. 2.3.7), 2.6, 2.7, Eberly 2e
- Reading for Today: §2.5.1, 3.1 Eberly 2e
- Reading for Next Class: §2.3.5, 2.4, 3.1.3, Eberly 2e
- Last Time: View Volume Specification and Viewing Transformation
- CG Basics: First of Three Tutorials on OpenGL (Three Parts)
 - 1. OpenGL & GL Utility Toolkit (GLUT) – V. Shreiner
 - 2. Basic rendering – V. Shreiner
 - 3. 3-D viewing setup – E. Angel
- Today: Scan Conversion (aka Rasterization)
 - Lines
 - Incremental algorithm
 - Bresenham’s algorithm & midpoint line algorithm
 - Circles and Ellipses
- Next Time: More Scan Conversion & Intro to Clipping
Where We Are

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Primary Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Course Overview</td>
<td>Chapter 1, Eberly 2nd</td>
</tr>
<tr>
<td>1</td>
<td>CG Basics: Transformation Matrices; Lab 0</td>
<td>Sections (§) 2.1, 2.2</td>
</tr>
<tr>
<td>2</td>
<td>Viewing 1: Overview, Projections</td>
<td>§ 2.2.3 – 22.4, 28</td>
</tr>
<tr>
<td>3</td>
<td>Viewing 2: Viewing Transformation</td>
<td>§ 2.3 esp. 2.3.4; FVFH slides</td>
</tr>
<tr>
<td>4</td>
<td>Lab 1a: Flash & OpenGL Basics</td>
<td>Ch. 2, 16th, Angel Primer</td>
</tr>
<tr>
<td>5</td>
<td>Viewing 3: Graphics Pipeline</td>
<td>§ 2.3 esp. 23.7, 26.27</td>
</tr>
<tr>
<td>6</td>
<td>Scan Conversion 1: Lines, Midpoint Algorithm</td>
<td>§ 2.5.1, 3.1; FVFH slides</td>
</tr>
<tr>
<td>7</td>
<td>Viewing 4: Clipping & Culling; Lab 1b</td>
<td>§ 2.3.2, 2.4, 3.3.3</td>
</tr>
<tr>
<td>8</td>
<td>Scan Conversion 2: Polygons, Clipping Intro</td>
<td>§ 2.4, 2.5 esp. 2.6.4, 3.16</td>
</tr>
<tr>
<td>9</td>
<td>Surface Detail 1: Illumination & Shading</td>
<td>§ 2.5, 2.6.1 – 2.6.2, 4.3.2, 20.2</td>
</tr>
<tr>
<td>10</td>
<td>Lab 2a: Direct3D / DirectX Intro</td>
<td>§ 2.7, Direct3D handout</td>
</tr>
<tr>
<td>11</td>
<td>Surface Detail 2: Textures, OpenGL Shading</td>
<td>§ 2.6.3, 20.3 – 20.4, Primer</td>
</tr>
<tr>
<td>12</td>
<td>Surface Detail 3: Mappings, OpenGL Textures</td>
<td>§ 20.5 – 20.13</td>
</tr>
<tr>
<td>13</td>
<td>Surface Detail 4: Pixel/Vertex Shad.; Lab 2b</td>
<td>§ 3.1</td>
</tr>
<tr>
<td>14</td>
<td>Surface Detail 5: Direct3D Shading; CGLSL</td>
<td>§ 3.2 – 3.4, Direct3D handout</td>
</tr>
<tr>
<td>15</td>
<td>Demos 1: CGA, Fun; Scene Graphs: State</td>
<td>§ 4.1 – 4.3, CGA handout</td>
</tr>
<tr>
<td>16</td>
<td>Lab 3a: Shading & Transparency</td>
<td>§ 2.6, 20.1, Primer</td>
</tr>
<tr>
<td>17</td>
<td>Animation 1: Basics, Keyframes; HW/Exam</td>
<td>§ 5.1 – 5.2</td>
</tr>
<tr>
<td>18</td>
<td>Exam review: Hour Exam 1 (evening)</td>
<td>Chapters 1 – 4, 20</td>
</tr>
<tr>
<td>19</td>
<td>Demos 2: SFX: Skinning, Morphing</td>
<td>§ 5.3 – 5.5, CGA handout</td>
</tr>
<tr>
<td>20</td>
<td>Demos 3: Scenes, B-reps/Volume Graphics</td>
<td>§ 10.4, 12.7, Mesh handout</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set, heavily-shaded entries, that of a machine problem (programming assignment), blue-shaded entries, that of a paper review, and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
CTM for "Polygons-to-Pixels" Pipeline

- Entire problem can be reduced to a composite matrix multiplication of vertices, clipping, and a final matrix multiplication to produce screen coordinates.
- Final composite matrix (CTM) is composite of all modeling (instance) transformations (CMTM) accumulated during scene graph traversal from root to leaf, composited with the final composite normalizing transformation N applied to the root/world coordinate system:
 1) $N = D_{\text{persp}} S_{x} S_{y} M_{\text{rot}} T_{\text{trans}}$
 2) $\text{CTM} = N \cdot \text{CMTM}$
 3) $P' = \text{CTM} \cdot P$ for every vertex P defined in its own coordinate system
 4) $P_{\text{screen}} = 512 \cdot P' + 1$ for all clipped P'

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Review: Lab 1a & NeHe Tutorials on GameDev

References
NeonHelium tutorials: http://nehe.gamedev.net
Mesa home page: http://www.mesa3d.org

1. (20%) Mesa setup. Log into your Gentoo Linux account in Nichols 128, the Linux Lab. Go to the NeHe site and follow the “Setting up OpenGL in MacOS” to create a GL window. As in MacOS X, Gentoo keeps its GL include files in /usr/include/GL. Name your program labl_1.c and include it in your lab assignment submission. Take a screen shot of the window and save it in GIMP as labl_1.jpg.

2. (20%) Polygon rasterization (scan conversion). Follow Lesson 02 to draw a 2-D polygon and shade it using smooth (Gouraud) and constant (flat) shading. Turn in labl_2.c and labl_2.jpg.

3. (20%) Modelview transformation: 3-D Rotation of 2-D objects. Follow Lesson 03 to rotate the flat polygons and then render them. Turn in labl_3.c and labl_3.jpg.

4. (20%) Modelview transformation: 3-D Rotation of 3-D objects. Follow Lesson 04 to draw 3-D polyhedra and rotate them. Turn in labl_4.c and labl_4.jpg.

5. (20%) XWindows. Repeat Lesson 04 from a notebook computer or PC running Mac OS X, Windows XP or Windows Vista. Turn in labl_5.jpg.
Review: Coordinate Spaces & Transformation Matrices

(See Eberly 2e § 2.3.2 – 2.3.7, pp. 48-66, especially p. 58)

1. model coordinates / object coordinates
2. world coordinates / scene coordinates
3. camera coordinates / eye coordinates
4. (optional) view coordinates / clip coordinates
5. normalized device coordinates (NDC)
6. screen coordinates

\[X_{\text{model}} \rightarrow (H_{\text{world}}) \]
\[X_{\text{world}} \rightarrow (H_{\text{view}}) \]
\[X_{\text{view}} \rightarrow (H_{\text{proj}}) \]
\[X_{\text{clip}} \rightarrow \text{(perspective division)} \]
\[X_{\text{ndc}} \rightarrow (H_{\text{window}}) \]
\[X_{\text{window}} \]

\(H_{\text{world}} \): modelview transformation

Normalizing transformation: \(X_{\text{world}} \rightarrow X_{\text{ndc}} \)

\(H_{\text{view}} \): “view matrix” (really NT!)
\(H_{\text{proj}} \): projection matrix
\(/W:\) perspective division

\(H_{\text{window}} \): window matrix
(aka viewport transformation)
Scan Converting Lines

Line Drawing
- Draw a line on a raster screen between two points
- Why is this a difficult problem?
 - What is “drawing” on a raster display?
 - What is a “line” in raster world?
 - Efficiency and appearance are both important

Problem Statement
- Given two points P and Q in XY plane, both with integer coordinates, determine which pixels on raster screen should be on in order to make picture of a unit-width line segment starting at P and ending at Q
What Is Scan Conversion?

- Final step of rasterisation (process of taking geometric shapes and converting them into an array of pixels stored in the framebuffer to be displayed)
- Takes place after clipping occurs
- All graphics packages do this at the end of the rendering pipeline
- Takes triangles and maps them to pixels on the screen
- Also takes into account other properties like lighting and shading, but we'll focus first on algorithms for line scan conversion

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Finding Next Pixel

Special case:

- Horizontal Line:
 Draw pixel \(P \) and increment \(x \) coordinate value by 1 to get next pixel.

- Vertical Line:
 Draw pixel \(P \) and increment \(y \) coordinate value by 1 to get next pixel.

- Diagonal Line:
 Draw pixel \(P \) and increment both \(x \) and \(y \) coordinate by 1 to get next pixel.

What should we do in general case?

- Increment \(x \) coordinate by 1 and choose point closest to line.
- But how do we measure “closest”?
Vertical Distance

- Why can we use vertical distance as measure of which point is closer?
 - ... because vertical distance is proportional to actual distance

- Similar triangles show that true distances to line (in blue) are directly proportional to vertical distances to line (in black) for each point.
- Therefore, point with smaller vertical distance to line is closest to line.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Strategy 1: Incremental Algorithm [1]

Basic Algorithm
- Find equation of line that connects two points P and Q
- Starting with leftmost point, increment x_i by 1 to calculate $y_i = m \times x_i + B$
 where $m =$ slope, $B =$ y intercept
- Draw pixel at $(x_i, \text{Round}(y_i))$ where
 Round $(y_i) = \text{Floor}(0.5 + y_i)$

Incremental Algorithm:
- Each iteration requires a floating-point multiplication
- Modify algorithm to use deltas
 - $(y_{i+1} - y_i) = m \times (x_{i+1} - x_i) + B$
 - $y_{i+1} = y_i + m \times (x_{i+1} - x_i)$
 - If $\Delta x = 1$, then $y_{i+1} = y_i + m$
- At each step, we make incremental calculations based on preceding step to find next y value

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Strategy 1: Incremental Algorithm [2]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Strategy 1: Incremental Algorithm [3]

Example Code & Problems

```c
void Line(int x0, int y0, int x1, int y1) {
    int x, y;
    float dy = y1 - y0;
    float dx = x1 - x0;
    float m = dy / dx;
    y = y0;
    for (x = x0; x < x1; ++x) {
        WritePixel(x, Round(y));
        y = y + m;
    }
}
```

Since slope is fractional, need special case for vertical lines (dx = 0)

Rounding takes time

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Strategy 2: Midpoint Line Algorithm [1]

- Assume that line's slope is shallow and positive \(0 < \text{slope} < 1\); other slopes can be handled by suitable reflections about principle axes
- Call lower left endpoint \((x_0, y_0)\) and upper right endpoint \((x_1, y_1)\)
- Assume that we have just selected pixel \(P\) at \((x_p, y_p)\)
- Next, we must choose between pixel to right (E pixel), or one right and one up (NE pixel)
- Let \(Q\) be intersection point of line being scan-converted and vertical line \(x = x_p + 1\)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Strategy 2: Midpoint Line Algorithm [2]

\[P = (x_p, y_p) \]

Previous pixel

States:

- \(x = x_p + 1 \)

Choices for current pixel

- E pixel

Choices for next pixel

- NE pixel

Midpoint M

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Strategy 2: Midpoint Line Algorithm [3]

- Line passes between E and NE
- Point that is closer to intersection point Q must be chosen
- Observe on which side of line midpoint M lies:
 - E is closer to line if midpoint M lies above line, i.e., line crosses bottom half
 - NE is closer to line if midpoint M lies below line, i.e., line crosses top half
- Error (vertical distance between chosen pixel and actual line) is always \(\leq .5 \)

- Algorithm chooses NE as next pixel for line shown
- Now, need to find a way to calculate on which side of line midpoint lies
Line Equations and Properties

Line equation as function \(f(x) \): \(y = mx + B = \frac{dy}{dx} x + B \)

Line equation as implicit function: \(f(x, y) = ax + by + c = 0 \)

So from above,

\[
\begin{align*}
 y \cdot dx &= dy \cdot x + B \cdot dx \\
 dy \cdot x - y \cdot dx + B \cdot dx &= 0 \\
 \therefore a &= dy, b = -dx, c = B \cdot dx
\end{align*}
\]

Properties (proof by case analysis):

- \(f(x_m, y_m) = 0 \) when any point \(M \) is on line
- \(f(x_m, y_m) < 0 \) when any point \(M \) is above line
- \(f(x_m, y_m) > 0 \) when any point \(M \) is below line
- Our decision will be based on value of function at midpoint \(M \) at \((x_p + 1, y_p + .5)\)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Decision Variable

Decision Variable d:
- We only need sign of $f(x_p + 1, y_p + .5)$ to see where line lies, and then pick nearest pixel
- $d = f(x_p + 1, y_p + .5)$
 - if $d > 0$ choose pixel NE
 - if $d < 0$ choose pixel E
 - if $d = 0$ choose either one consistently

How do we incrementally update d?
- On basis of picking E or NE, figure out location of M for that pixel, and corresponding value d for next grid line
- We can derive d for the next pixel based on our current decision
East Neighbor (E) Case

Increment M by one in x direction

$$d_{new} = f(x_p + 2, y_p + .5) = a(x_p + 2) + b(y_p + .5) + c$$
$$d_{old} = a(x_p + 1) + b(y_p + .5) + c$$

- $d_{new} - d_{old}$ is the incremental difference ΔE

- $d_{new} = d_{old} + a$
 $\Delta E = a = dy$ (2 slides back)

- We can compute value of decision variable at next step incrementally without computing $F(M)$ directly
 $$d_{new} = d_{old} + \Delta E = d_{old} + dy$$

- ΔE can be thought of as correction or update factor to take d_{old} to d_{new}
- It is referred to as forward difference

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Northeast Neighbor (NE) Case

Increment M by one in both x and y directions

\[
d_{\text{new}} = f(x_p + 2, y_p + 1.5) = a(x_p + 2) + b(y_p + 1.5) + c
\]

\[
\Delta \text{NE} = d_{\text{new}} - d_{\text{old}}
\]

\[
d_{\text{new}} = d_{\text{old}} + a + b
\]

\[
\Delta \text{NE} = a + b = dx - dy
\]

Thus, incrementally,

\[
d_{\text{new}} = d_{\text{old}} + \Delta \text{NE} = d_{\text{old}} + dx - dy
\]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Midpoint Algorithm [1]:
Forward Differences

- At each step, algorithm chooses between 2 pixels based on sign of
decision variable calculated in previous iteration.

- It then updates decision variable by adding either ΔE or ΔNE to old
value depending on choice of pixel. Simple additions only!

- First pixel is first endpoint \((x_0, y_0)\), so we can directly calculate initial
value of \(d\) for choosing between \(E\) and \(NE\)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Midpoint Algorithm [2]:
Initialization and Normalization

- First midpoint for first \(d = d_{\text{start}} \) is at \((x_0 + 1, y_0 + .5)\)
- \(f (x_0 + 1, y_0 + .5) \)
 \[= a(x_0 + 1) + b(y_0 + .5) + c \]
 \[= a * x_0 + b * y_0 + a + \frac{b}{2} + c \]
 \[= f(x_0, y_0) + a + \frac{b}{2} \]
 But \((x_0, y_0)\) is point on line and \(f(x_0, y_0) = 0 \)

- Therefore, \(d_{\text{start}} = a + \frac{b}{2} = dy - \frac{dx}{2} \)
 - use \(d_{\text{start}} \) to choose second pixel, etc.

- To eliminate fraction in \(d_{\text{start}} \):
 - redefine \(f \) by multiplying it by 2; \(f(x, y) = 2(ax + by + c) \)
 - This multiplies each constant and decision variable by 2, but does not change sign

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Bresenham’s Midpoint Line Algorithm: Pseudocode

```c
void MidpointLine(int x0, int y0, int x1, int y1) {
    int dx = (x1 - x0), dy = (y1 - y0);
    int d = 2 * dy - dx;
    int incrE = 2 * dy;
    int incrNE = 2 * (dy - dx);
    int x = x0, y = y0;
    writePixel(x, y);

    while (x < x1) {
        if (d <= 0)   d = d + incrE;  // East Case
        else          d = d + incrNE, ++y;  // Northeast Case
        ++x;
        writePixel(x, y);
    }
}
```

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Preview: Drawing Circles, Versions 1 & 2

Version 1: really bad
For x from $-R$ to R:

$$y = \sqrt{R^2 - x^2};$$

Pixel (round(x), round(y));
Pixel (round(x), round($-y$));

Version 2: slightly less bad
For x from 0 to 360:

Pixel (round ($R \cdot \cos(x)$),
round ($R \cdot \sin(x)$));
Preview: Drawing Circles, Version 3

• Symmetry: If \((x_0 + a, y_0 + b)\) is on circle
 – also \((x_0 \pm a, y_0 \pm b)\) and \((x_0 \pm b, y_0 \pm a)\), hence 8-way symmetry.

• Reduce the problem to finding the pixels for 1/8 of the circle

\[(x-x_0)^2 + (y-y_0)^2 = R^2 \]
Preview: Using The Symmetry

- Scan top right 1/8 of circle of radius R
- Circle starts at \((x_0, y_0 + R)\)
- Let’s use another incremental algorithm with decision variable evaluated at midpoint

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Summary

- Lab 1a: Based on First of Three Tutorials on OpenGL (Three Parts)
- Lecture 5: Viewing 3 of 4 – Graphics Pipeline (§2.3.2 - 2.3.7, pp. 48-66)
- See Also: CG Basics 1-2
 - CG Basics 1: Mathematical Foundations
 - CG Basics 2: OpenGL Primer 1 of 3 (in greater detail)
- Today: Scan Conversion (aka Rasterization)
 - Lines
 - Incremental algorithm
 - Symmetries (8) and reduction to two-case analysis: E vs. NE
 - Decision variable and method of forward differences
 - (Bresenham’s) midpoint line algorithm
 - Circles and Ellipses
- Next Time: More Scan Conversion & Intro to Clipping
 - Polygons: scan line interpolation
 - Clipping basics: 2-D problem definition and examples
Terminology

- **Picture elements (pixels)**
- **Scan Conversion (aka Rasterization)**
 - Given: geometric object (e.g., line segment, projected polygon)
 - Decide: what pixels to light (turn on; later, color/shade)
 - Basis: what part of pixels crossed by object
- **Issues (Reasons why Scan Conversion is Nontrivial Problem)**
 - **Aliasing (e.g., jaggies)** – discontinuities in lines
 - **Cracks**: discontinuities in “polygon” mesh
- **Line Drawing**
 - **Incremental algorithm** – uses rounding, floating point arithmetic
 - **Forward differences** – precalculated amounts to add to running total
 - **Midpoint line algorithm** – uses forward differences
 - For lines: **Bresenham’s algorithm**
 - For circles and ellipses