

Incremental Algorithm [1]: $x = x_0, y = y_0 + R, Pixel(x, y);$ for $(x = x_0 + 1; (x - x_0) > (y - y_0); x++) {$ if (decision var < 0) { /* move east */ update decision variable else { /* move south east */ uvdate decision variable y--; Pixel(x, y); Note: can replace all occurrences of x_0 , y_0 with 0, shifting coordinates by $(-x_0, -y_0)$ Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission

Incremental Algorithm [2]: Computations needed

- Decision variable
 - negative if we move E, positive if we move SE (or vice versa).
- Follow line strategy: Use implicit equation of circle

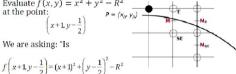
$$f(x,y) = x^2 + y^2 - R^2 = 0$$

- f(x, y) is zero on circle, negative inside, positive outside
- If we are at pixel (x, y) examine (x + 1, y) and (x + 1, y 1)
- ▶ Compute f at the midpoint

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permiss

Decision Variable

Evaluate $f(x,y) = x^2 + y^2 - R^2$ at the point: $\left(x+1, y-\frac{1}{2}\right)$



We are asking: "Is

positive or negative?" (it is zero on circle)

- ▶ If **negative**, midpoint inside circle, **choose** E
- vertical distance to the circle is less at $\,(x+1,y)$ than at (x+1,y-1)
- If positive, opposite is true, choose SE

lapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.lv/hiSt0f Reused with permission

Right Decision Variable?

- Decision based on vertical distance
- \blacktriangleright Ok for lines, since d and d_{vert} are proportional
- For circles, not true:

$$d((x+1,y),Circ) = \sqrt{(x+1)^2 + y^2} - R$$

$$d((x+1,y-1),Circ) = \sqrt{(x+1)^2 + (y-1)^2} - R$$

lacktriangle Which d is closer to zero? (i.e. which of the two values below is closer to

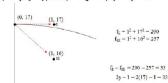
$$\sqrt{(x+1)^2+y^2}$$
 or $\sqrt{(x+1)^2+(y-1)^2}$

Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.lv/hiSt0f Reused with permiss

Alternate Phrasing [1]

- We could ask instead: "Is $(x+1)^2 + y^2$ or $(x+1)^2 + (y-1)^2$ closer to R^2 ?"
- > The two values in equation above differ by

$$[(x+1)^2 + y^2] - [(x+1)^2 + (y-1)^2] = 2y - 1$$



Adapted from slides © 1997 - 2010 van Dam et al., Brown University

Alternate Phrasing [2]

The second value, which is always less, is closer if its difference from \mathbb{R}^2 is less than: $\frac{1}{2}(2y-1)$

i.e., if
$$R^2 - [(x+1)^2 + (y-1)^2] < \frac{1}{2}(2y-1)$$

then
$$0 < y - \frac{1}{2} + (x+1)^2 + (y-1)^2 - R^2$$

 $0 < (x+1)^2 + y^2 - 2y + 1 + y - \frac{1}{2} - R^2$
 $0 < (x+1)^2 + y^2 - y + \frac{1}{2} - R^2$
 $0 < (x+1)^2 + (y - \frac{1}{2})^2 + \frac{1}{4} - R^2$

Adapted from slides © 1997 - 2010 van Dam et al., Brown University

Alternate Phrasing [3]

• The radial distance decision is whether

$$d_1 = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 + \frac{1}{4} - R^2$$

is positive or negative.

▶ The *vertical distance decision* is whether

$$d_2 = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2$$

is positive or negative; d_1 and d_2 are $\frac{1}{4}$ apart.

• The integer d_1 is positive only if $d_2 + \frac{1}{4}$ is positive (except special case where $d_2 = 0$: remember you're using integers).

Adapted from slides © 1997 - 2010 van Dam et al., Brown University http://bit.ly/hiSt0f Reused with permission

Incremental Algorithm Revisited [1]

How to compute the value of

$$f(x,y) = (x+1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2$$

at successive points? (vertical distance approach)

Answer: Note that f(x + 1, y) - f(x, y)

is
$$\Delta_E(x, y) = 2x + 3$$

and that

f(x+1,y-1) - f(x,y)

 $\Delta_{SE}(x, y) = 2x + 3 - 2y + 2$ is just

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Incremental Algorithm Revisited [2]

- If we move E, update by adding 2x + 3
- ▶ If we move SE, update by adding 2x + 3 2y + 2
- ▶ Forward differences of a 1st degree polynomial are constants and those of a $2^{\rm nd}$ degree polynomial are $1^{\rm st}$ degree polynomials
 - this "first order forward difference," like a partial derivative, is one degree



Adapted from slides © 1997 – 2010 van Dam et al., Brown University http://bit.lv/hiSt0f Reused with permission.

Second Differences [1]

▶ The function $\Delta_E(x, y) = 2x + 3$ is linear, hence amenable to incremental computation:

$$\begin{split} &\Delta_{\mathrm{E}}(x+1,y) - \Delta_{\mathrm{E}}(x,y) = 2 \\ &\Delta_{\mathrm{E}}(x+1,y-1) - \Delta_{\mathrm{E}}(x,y) = 2 \end{split}$$

Similarly

$$\Delta_{SE}(x + 1, y) - \Delta_{SE}(x, y) = 2$$

 $\Delta_{SE}(x + 1, y - 1) - \Delta_{SE}(x, y) = 4$

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

http://bit.lv/hiSt0f Reused with permission

Second Differences [2]

- For any step, can compute new $\Delta_{E}(x, y)$ from old $\Delta_{E}(x, y)$ by adding appropriate second constant increment - update delta terms as we
- This is also true of $\Delta_{SE}(x, y)$
- Having drawn pixel (a, b), decide location of new pixel at (a + 1, b) or (a + 1, b - 1), using previously computed $\Delta(a, b)$
- $\blacktriangleright\,$ Having drawn new pixel, must update $\Delta(a,b)$ for next iteration; need to find either $\Delta(a+1,b)$ or $\Delta(a+1,b-1)$ depending on pixel choice
- Must add $\Delta_E(a,b)$ or $\Delta_{SE}(a,b)$ to $\Delta(a,b)$
- > So we..

 - Look at d to decide which to draw next, update x and y
 Update d using Δ_E(a, b) or Δ_{SE}(a, b)
 Update each of Δ_E(a, b) and Δ_{SE}(a, b) for future use
 - Draw pixel

Adapted from slides @ 1997 - 2010 van Dam et al., Brown University

Midpoint Eighth Circle Algorithm

MEC (R) /* 1/8th of a circle w/ radius R */ { int x = 0, y = R;int $delta_E = 2*x + 3;$ int $delta_SE = 2(x-y) + 5;$ float decision = (x+1)*(x+1) + (y+0.5)*(y+0.5) - R*R; Pixel(x, y); while(y>x){ if (decision > 0) ${/* Move east */}$ decision += delta_E; $\label{eq:delta_E} $\operatorname{delta_E} += 2; \operatorname{delta_SE} += 2; /*\operatorname{Update delta*/} $}$ else /* Move SE */ { decision += delta_SE;

x++; Pixel(x, y); } } Adapted from slides © 1997 - 2010 van Dam et al., Brown University

delta E += 2; delta SE += 4; /*Update delta*/}

