Scan Conversion 2 of 2: Circles/Ellipses and Polygons

William H. Hsu
Department of Computing and Information Sciences, KSU

Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Sections 2.4, 2.5 esp. 2.5.4, 3.1.6, Eberly 2e – see http://bit.ly/ieUq45
Next class: Sections 2.5, 2.6.1-2.6.2, 4.3.2, 20.2, Eberly 2e
Lecture Outline

- **Readings**
 - Last class: §2.3.5, 2.4, 3.1.3, Eberly 2e
 - Today's class: §2.4, 2.5 (Especially 2.5.4), 3.1.6, Eberly 2e
 - Next class: §2.5, 2.6.1-2.6.2, 4.3.2, 20.2, Eberly 2e

- **Excerpts from Van Dam notes, Brown CS123**
 - Scan converting circles/ellipses (starting from 19 in fall, 2010 notes)
 - Polygons (Shapes 2-4)
 - Triangle meshes (Shapes 13-14)
 - Scan line interpolation (Polygons 7; Shading 14, 2005 – 2009 notes)

- **Last Time: Intro to Clipping and Culling**
 - Clipping: Cohen-Sutherland, Cyrus-Beck / Liang-Barsky
 - Visibility Culling: view frustum, back face, occlusion

- **Today: Scan Conversion, Concluded**
 - Circles and ellipses
 - Polygons
Where We Are

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
<th>Primary Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Course Overview</td>
<td>Chapter 1, Eberly 2nd</td>
</tr>
<tr>
<td>1</td>
<td>CG Basics: Transformation Matrices; Lab 0</td>
<td>Sections (s) 2.1, 2.2</td>
</tr>
<tr>
<td>2</td>
<td>Viewing 1: Overview, Projections</td>
<td>§ 2.3 – 2.4, 2.8</td>
</tr>
<tr>
<td>3</td>
<td>Viewing 2: Viewing Transformation</td>
<td>§ 2.3 esp. 2.3.4; FVFH slides</td>
</tr>
<tr>
<td>4</td>
<td>Lab 1a: Flash & OpenGL Basics</td>
<td>Ch. 2, 16, Angel Primer</td>
</tr>
<tr>
<td>5</td>
<td>Viewing 3: Graphics Pipeline</td>
<td>§ 2.3 esp. 2.3.7, 2.6, 2.7</td>
</tr>
<tr>
<td>6</td>
<td>Scan Conversion 1: Lines, Midpoint Algorithm</td>
<td>§ 2.5.1, 3.1, FVFH slides</td>
</tr>
<tr>
<td>7</td>
<td>Viewing 4: Clipping & Culling; Lab 1b</td>
<td>§ 2.3, 2.4, 2.13</td>
</tr>
<tr>
<td>8</td>
<td>Scan Conversion 2: Polygons, Clipping Intro</td>
<td>§ 2.4, 2.5 esp. 2.5, 3.16</td>
</tr>
<tr>
<td>9</td>
<td>Surface Detail 1: Illumination & Shading</td>
<td>§ 2.5, 2.6, 1 – 2.6, 2.6, 2, 4.3.2, 20.2</td>
</tr>
<tr>
<td>10</td>
<td>Lab 2a: Direct3D / DirectX Intro</td>
<td>§ 2.7, Direct3D handout</td>
</tr>
<tr>
<td>11</td>
<td>Surface Detail 2: Textures; OpenGL Shading</td>
<td>§ 2.6.3, 20.3 – 20.4, Primer</td>
</tr>
<tr>
<td>12</td>
<td>Surface Detail 3: Mappings; OpenGL Textures</td>
<td>§ 20.5 – 20.13</td>
</tr>
<tr>
<td>13</td>
<td>Surface Detail 4: Pixel/Vertex Shading; Lab 2b</td>
<td>§ 3.1</td>
</tr>
<tr>
<td>14</td>
<td>Surface Detail 5: Direct3D Shading; OGLSL</td>
<td>§ 3.2 – 3.4, Direct3D handout</td>
</tr>
<tr>
<td>15</td>
<td>Demos 1: CGA, Fun; Scene Graphs: State</td>
<td>§ 4.1 – 4.3, CGA handout</td>
</tr>
<tr>
<td>16</td>
<td>Lab 3a: Shading & Transparency</td>
<td>§ 2.6, 20.1, Primer</td>
</tr>
<tr>
<td>17</td>
<td>Animation 1: Basics, Keyframes; HW/Exam</td>
<td>§ 5.1 – 5.2</td>
</tr>
<tr>
<td>18</td>
<td>Exam review: Hour Exam 1 (evening)</td>
<td>Chapters 1 – 4, 20</td>
</tr>
<tr>
<td>19</td>
<td>Scene Graphs: Rendering; Lab 3b: Shader</td>
<td>§ 4.4 – 4.7</td>
</tr>
<tr>
<td>19</td>
<td>Demos 2: SFX: Skinning, Morphing</td>
<td>§ 5.3 – 5.5, CGA handout</td>
</tr>
<tr>
<td>20</td>
<td>Demos 3: Surfaces, B-reps/Volume Graphics</td>
<td>§ 10.4, 12.7, Mesh handout</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set, heavily-shaded entries, that of a machine problem (programming assignment), blue-shaded entries, that of a paper review, and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
Drawing Circles, Versions 1 & 2

Version 1: really bad
For x from $-R$ to R:
$$y = \sqrt{R^2 - x^2};$$
Pixel (round(x), round(y));
Pixel (round(x), round$(-y)$);

Version 2: slightly less bad
For x from 0 to 360:
Pixel (round $(R \times \cos(x))$, round $(R \times \sin(x))$);
• Symmetry: If \((x_0 + a, y_0 + b)\) is on circle
 - also \((x_0 \pm a, y_0 \pm b)\) and \((x_0 \pm b, y_0 \pm a)\), hence 8-way symmetry.

• Reduce the problem to finding the pixels for 1/8 of the circle

\[
(x - x_0)^2 + (y - y_0)^2 = R^2
\]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Using The Symmetry

- Scan top right 1/8 of circle of radius R
- Circle starts at $(x_0, y_0 + R)$
- Let’s use another incremental algorithm with decision variable evaluated at midpoint

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Incremental Algorithm [1]: Sketch

\[x = x_0, \ y = y_0 + R, \ \text{Pixel}(x, y); \]
\[
\text{for} \ (x = x_0+1; \ (x-x_0) > (y-y_0); \ x++) \ {}
\]
\[
\quad \text{if (decision var < 0) \ {}
\quad \quad /* \text{move east} */
\quad \quad \text{update decision variable}
\quad \}
\]
\[
\quad \text{else} \ {}
\quad \quad /* \text{move south east} */
\quad \quad \text{update decision variable}
\quad \quad y--;\\
\quad \}
\]
\quad \text{Pixel}(x, y);
\]

\[\text{Note: can replace all occurrences of } x_0, y_0 \text{ with } 0, \]
\[\text{shifting coordinates by } (-x_0, -y_0) \]

Adapted from slides © 1997 – 2010 van Dam \textit{et al.}, Brown University
\url{http://bit.ly/hiSt0f} Reused with permission.
Incremental Algorithm [2]:
Computation needed

- Decision variable
 - negative if we move E, positive if we move SE (or vice versa).

- Follow line strategy: Use implicit equation of circle
 \[f(x, y) = x^2 + y^2 - R^2 = 0 \]
 - \(f(x, y) \) is zero on circle, negative inside, positive outside

- If we are at pixel \((x, y)\) examine \((x + 1, y)\) and \((x + 1, y - 1)\)
- Compute \(f \) at the midpoint

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Decision Variable

- Evaluate $f(x, y) = x^2 + y^2 - R^2$ at the point: $P = (x_0, y_0)$.
- We are asking: "Is
 $$f(x + 1, y - \frac{1}{2}) = (x + 1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2$$
 positive or negative?" (it is zero on circle)
- If negative, midpoint inside circle, choose E.
 - vertical distance to the circle is less at $(x + 1, y)$ than at $(x + 1, y - 1)$.
- If positive, opposite is true, choose SE.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Right Decision Variable?

- Decision based on vertical distance
- Ok for lines, since d and d_{verc} are proportional
- For circles, not true:
 \[
 d((x + 1, y), Cir) = \sqrt{(x + 1)^2 + y^2} - R
 \]
 \[
 d((x + 1, y - 1), Cir) = \sqrt{(x + 1)^2 + (y - 1)^2} - R
 \]
- Which d is closer to zero? (i.e. which of the two values below is closer to R):
 \[
 \sqrt{(x + 1)^2 + y^2} \text{ or } \sqrt{(x + 1)^2 + (y - 1)^2}
 \]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Alternate Phrasing [1]

- We could ask instead:

 "Is \((x + 1)^2 + y^2\) or \((x + 1)^2 + (y - 1)^2\) closer to \(R^2\)?"

- The two values in equation above differ by

\[
[(x + 1)^2 + y^2] - [(x + 1)^2 + (y - 1)^2] = 2y - 1
\]

\[(0, 17)\] \[(1, 17)\] \[(1, 16)\] \[
\begin{align*}
f_x &= 1^2 + 17^2 = 290 \\
f_y &= 1^2 + 16^2 = 257 \\
\frac{f_x}{f_y} &= 250 - 257 = 33 \\
2y - 1 &= 2(17) - 1 = 33
\end{align*}
\]
Alternate Phrasing [2]

The second value, which is always less, is closer if its difference from R^2 is less than: $\frac{1}{2} (2y - 1)$

i.e., if $R^2 - [(x + 1)^2 + (y - 1)^2] < \frac{1}{2} (2y - 1)$

then $0 < y - \frac{1}{2} + (x + 1)^2 + (y - 1)^2 - R^2$

$0 < (x + 1)^2 + y^2 - 2y + 1 + y - \frac{1}{2} - R^2$

$0 < (x + 1)^2 + y^2 - y + \frac{1}{2} - R^2$

$0 < (x + 1)^2 + (y - \frac{1}{2})^2 + \frac{1}{4} - R^2$
The *radial distance decision* is whether
\[d_1 = (x + 1)^2 + \left(y - \frac{1}{2} \right)^2 + \frac{1}{4} - R^2 \]
is positive or negative.

The *vertical distance decision* is whether
\[d_2 = (x + 1)^2 + \left(y - \frac{1}{2} \right)^2 - R^2 \]
is positive or negative; \(d_1 \) and \(d_2 \) are \(\frac{1}{4} \) apart.

The integer \(d_1 \) is positive only if \(d_2 + \frac{1}{4} \) is positive (except special case where \(d_2 = 0 \): remember you’re using integers).
Incremental Algorithm Revisited [1]

- How to compute the value of
 \[f(x, y) = (x + 1)^2 + \left(y - \frac{1}{2}\right)^2 - R^2 \]
 at successive points? (vertical distance approach)

- Answer: Note that \(f(x + 1, y) - f(x, y) \)
 is \(\Delta_E(x, y) = 2x + 3 \)
 and that \(f(x + 1, y - 1) - f(x, y) \)
 is just \(\Delta_{SE}(x, y) = 2x + 3 - 2y + 2 \)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Incremental Algorithm Revisited [2]

- If we move E, update by adding $2x + 3$
- If we move SE, update by adding $2x + 3 - 2y + 2$
- Forward differences of a 1st degree polynomial are constants and those of a 2nd degree polynomial are 1st degree polynomials
 - this “first order forward difference,” like a partial derivative, is one degree lower

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Second Differences [1]

- The function $\Delta_E(x, y) = 2x + 3$ is linear, hence amenable to incremental computation:
 \[
 \Delta_E(x + 1, y) - \Delta_E(x, y) = 2 \\
 \Delta_E(x + 1, y - 1) - \Delta_E(x, y) = 2
 \]

- Similarly
 \[
 \Delta_{SE}(x + 1, y) - \Delta_{SE}(x, y) = 2 \\
 \Delta_{SE}(x + 1, y - 1) - \Delta_{SE}(x, y) = 4
 \]
Second Differences [2]

- For any step, can compute new $\Delta_E(x, y)$ from old $\Delta_E(x, y)$ by adding appropriate second constant increment – update delta terms as we move.
 - This is also true of $\Delta_{SE}(x, y)$
- Having drawn pixel (a, b), decide location of new pixel at $(a + 1, b)$ or $(a + 1, b - 1)$, using previously computed $\Delta(a, b)$
- Having drawn new pixel, must update $\Delta(a, b)$ for next iteration; need to find either $\Delta(a + 1, b)$ or $\Delta(a + 1, b - 1)$ depending on pixel choice
- Must add $\Delta_E(a, b)$ or $\Delta_{SE}(a, b)$ to $\Delta(a, b)$
- So we...
 - Look at d to decide which to draw next, update x and y
 - Update d using $\Delta_E(a, b)$ or $\Delta_{SE}(a, b)$
 - Update each of $\Delta_E(a, b)$ and $\Delta_{SE}(a, b)$ for future use
 - Draw pixel

Midpoint Eighth Circle Algorithm

MEC(R) /* 1/8th of a circle w/ radius R */ {
 int x = 0, y = R;
 int delta_E = 2*x + 3;
 int delta_SE = 2*(x-y) + 5;
 float decision = (x+1)*(x+1) + (y + 0.5)*(y + 0.5) - R*R;
 Pixel(x, y);
 while (y > x) {
 if (decision > 0) /* Move east */
 decision += delta_E;
 delta_E += 2; delta_SE += 2; /*Update delta*/
 else /* Move SE */{
 y--;
 decision += delta_SE;
 delta_E += 2; delta_SE += 4; /*Update delta*/
 }
 x++; Pixel(x, y); }

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Analysis

- Uses floats!
- 1 test, 3 or 4 additions per pixel
- Initialization can be improved
- Multiply everything by 4: No Floats!
 - Makes the components even, but sign of decision variable remains same

Questions
- Are we getting all pixels whose distance from the circle is less than ½?
- Why is \(y > x \) the right stopping criterion?
- What if it were an ellipse?
Other Scan Conversion Problems

- Aligned Ellipses
- Non-integer primitives
- General conics
- Patterned primitives

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Aligned Ellipses

- Equation is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ i.e., $b^2 x^2 + a^2 y^2 = a^2 b^2$

- Computation of Δ_E and Δ_{SE} is similar
- Only 4-fold symmetry
- When do we stop stepping horizontally and switch to vertical?

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Direction-Changing Criterion [1]

- When absolute value of slope of ellipse is more than 1:

- How do you check this? At a point \((x, y)\) for which \(f(x, y) = 0\), a vector perpendicular to the level set is \(f(x, y)\) which is
 \[
 \left[\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y) \right]
 \]

- This vector points more right than up when
 \[
 \frac{\partial f}{\partial x}(x, y) - \frac{\partial f}{\partial y}(x, y) > 0
 \]
Direction-Changing Criterion [2]

- In our case, \(\frac{\partial f}{\partial x}(x, y) = 2a^2 x \) and \(\frac{\partial f}{\partial y}(x, y) = 2b^2 y \)

so we check for

\[
2a^2 x - 2b^2 y > 0 \\
a^2 x - b^2 y > 0
\]

- This, too, can be computed incrementally

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

Problems with Aligned Ellipses

- Now in ENE octant, not ESE octant
- This problem is an artifact of aliasing, remember filter?
Patterned Lines

- Patterned line from P to Q is not the same as patterned line from Q to P.

- Patterns can be **cosmetic** or **geometric**
 - Cosmetic: Texture applied after transformations
 - Geometric: Pattern subject to transformations

Cosmetic patterned line

Geometric patterned line
Geometric vs. Cosmetic

Cosmetic (Real-World Contact Paper)

Geometric (Perspectivized/Filtered)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Non-Integer Primitives & General Conics

- Non-Integer Primitives
 - Initialization is harder
 - Endpoints are hard, too
 - making Line \((P, Q) \) and Line \((Q, R) \) join properly is a good test
 - Symmetry is lost

- General Conics
 - Very hard--the octant-changing test is tougher, the difference computations are tougher, etc.
 - Do it only if you have to
 - Note that drawing gray-scale conics is easier than drawing B/W conics
2-D Object Definition [1]

- **Lines and polylines:**
 - Polyline: lines drawn between ordered points
 - A closed polyline is a polygon, a simple polygon has no self-intersections

- **Convex and concave polygons:**
 - Convex: For every pair of points inside the polygon, the line between them is entirely inside the polygon.
 - Concave: For some pair of points inside the polygon, the line between them is not entirely inside the polygon. Not Convex.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
2-D Object Definition [2]

- Special Polygons:
 - Triangle
 - Square
 - Rectangle

- Circles:
 - Set of all points equidistant from one point called the center
 - The distance from the center is the radius r
 - The equation for a circle centered at (o_x, o_y) is $r^2 = x^2 + y^2$

- A circle can be approximated by a polygon with many sides.

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Triangle Meshes

- Most common representation of shape in three dimensions
- All vertices of triangle are guaranteed to lie in one plane (not true for quadrilaterals or other polygons)
- Uniformity makes it easy to perform mesh operations such as subdivision, simplification, transformation etc.
- Many different ways to represent triangular meshes

- See chapters 9 and 28 in book, en.wikipedia.org/wiki/polygon_mesh
 - Mesh transformation and deformation
 - Procedural generation techniques (upcoming labs on simulating terrain)

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Triangular Mesh Representation

- Vertex and face tables, analogous to 2D vertex and edge tables
- Each vertex listed once, triangles listed as ordered triplets of indices into the vertex table
- Edges inferred from triangles
- It's often useful to store associated faces with vertices (i.e., computing normals: vertex normal average of surrounding face normals)
- Vertices listed in counter clockwise order in face table.
 - No longer just because of convention. CCW order differentiates front and back of face

Adapted from slides © 1997 – 2010 van Dam et al., Brown University

General Polygons [1]: Scan Line Interpolation

- 1. Interpolate Value Along Polygon Edges to Get I_a, I_b
- 2. Interpolate Value Along Scan Lines to Get I_p

\[I_a = I_1 \frac{y_2 - y_3}{y_1 - y_3} + I_2 \frac{y_1 - y_2}{y_1 - y_3} \]
\[I_b = I_1 \frac{y_3 - y_1}{y_2 - y_1} + I_2 \frac{y_2 - y_3}{y_2 - y_1} \]
\[I_p = I_a \frac{x_p - x_a}{x_b - x_a} + I_b \frac{x_b - x_p}{x_b - x_a} \]

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
General Polygons [2]: Texture Mapping Preview

- Texture mapping polygons
 - \((u, v)\) texture coordinates are pre-calculated and specified per vertex
 - Vertices may have different texture coordinates for different faces

\[
\begin{align*}
(u, v) &= (0, 1) \\
(u, v) &= (0, 0) \\
(u, v) &= (1, 0)
\end{align*}
\]

- Texture coordinates are linearly interpolated across polygon

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
General Polygons [3]: Continuity and Scan Line Interpolation

what's the difference between these two solutions? Under which circumstances is the right one "better"?

Adapted from slides © 1997 – 2010 van Dam et al., Brown University
Summary

- Last Time: Clipping and Culling
 - What parts of scene to clip: edges vs. polygons of model
 - What parts of viewport to clip against: clip faces vs. clip edges
 - Cohen-Sutherland clipping: outcodes, simultaneous equations
 - Liang-Barisky / Cyrus-Beck clipping: parametric equations
 - Visibility culling: view frustum, back face, occlusion

- Today: Scan Conversion, Concluded
 - Circles and ellipses
 - Polygons: scan line interpolation (for flat/constant shading)
 - Later: Gouraud & Phong shading, z-buffering, texture mapping

- Excerpts from Van Dam notes, Brown CS123
 - Scan converting circles/ellipses
 - Polygons
 - Triangle meshes
 - Scan line interpolation
Terminology

- **Scan Conversion (aka Rasterization)**
 - Given: geometric object (e.g., circle, ellipse, projected polygon)
 - Decide: what pixels to light (turn on; later, color/shade)
 - Basis: what part of pixels crossed by object

- **Issues (Reasons why Scan Conversion is Nontrivial Problem)**
 - **Aliasing (e.g., jaggies)** – discontinuities in lines
 - **Cracks**: discontinuities in “polygon” mesh

- **Drawing Circles & Ellipses**
 - **Incremental algorithm** – uses rounding, floating point arithmetic
 - **Forward differences** – precalculated amounts to add to running total
 - **Decision variable** – value whose sign indicates which pixel is next

- **Drawing Polygons**
 - **Texture mapping** – finding pixels of image (texture) to put in polygon
 - **Scan line interpolation** – procedure for filling in closed curves