Readings:

Today: Flash animation handout
Next class: Chapter 17, esp. §17.1 – 17.2, Eberly

Reference: http://www.learning-maya.com

Today:
- Maya & Animation Preliminaries – Ross Tutorials
 - Maya interface: navigation, menus, tools, primitives

Next Class:
- Animations 2 – Rotations, Dynamics & Kinematics

Lecture Outline

- Reading for Last Class: §10.4, 12.7, Eberly
- Reading for Today: §11.1 – 11.6 Eberly 2nd Ed. (736), Flash handout
- Reading for Next Class: §17.1 – 17.2, Eberly 2nd Ed.

- Last Time: Curves & Surfaces
 - Piecewise polynomial curves (aka splines) and their properties
 - Hermite vs. Bézier curves: manipulation vs. display (rendering)
 - DeCasteljau’s algorithm: recursive linear interpolation
 - Other representations: Bernstein basis functions, matrix form
 - Bicubic surfaces
 - Bilinear interpolation

- Today: Maya & Animation Preliminaries – Ross Tutorials
 - Maya interface: navigation, menus, tools, primitives

- Last Time: Curves & Surfaces
 - Piecewise polynomial curves (aka splines) and their properties
 - Hermite vs. Bézier curves: manipulation vs. display (rendering)
 - DeCasteljau’s algorithm: recursive linear interpolation
 - Other representations: Bernstein basis functions, matrix form
 - Bicubic surfaces
 - Bilinear interpolation

- Today: Maya & Animation Preliminaries – Ross Tutorials
 - Maya interface: navigation, menus, tools, primitives
Review [2]: Linear Interpolation

- Linear interpolation (Lerp) is a common technique for generating a new value that is somewhere in between two other values.
- A `linear` could be a number, vector, color, or even something more complex like an entire 3D object...
- Consider interpolating between two points a and b by some parameter t: $Lerp(t, a, b) = (1-t)a + tb$

Review [3]: Hermite Curves

- Polylines are linear (1st order polynomial) interpolations between points
- Green points P0 and P1: They determine the tangents at the join points:
 - $(1-t)P_0 + tP_1$ are called weighting functions of P_0 and P_1
- Splines are higher order polynomial interpolations between points
- Linear interpolation but with higher order weighting functions allowing better approximation/smoothness of curves.
- One representation: Hermite curve (interpolating spline):
 - Determined by two control points P_0 and P_1, an initial tangent vector v_0, and a final tangent vector v_1.
 - Equations:
 - $y(t) = (2t^3 - 3t^2 + 1)P_0 + (-2t^3 + 3t^2)P_1$
 - $(t^2 - 2t + 1)v_0 + (t^2 - 2t + 1)v_1$

Review [4]: Bézier Curves

- Bézier representation is similar to Hermite.
- 4 points instead of 2 points and 2 vectors (P_1-P_0)
- Initial position P_0, tangent vector is $P_1 - P_0$.
- Final position P_3, tangent vector is $P_3 - P_2$.
- This representation allows a spline to be stored as a list of vertices with some global parameters that describe the smoothness and continuity.
- Bézier splines are widely used (Adobe, Microsoft) for font definition.

Review [5]: De Casteljau's Algorithm

- Geometric Continuity: G^i
 - Guarantees that direction of ith order derivative equal
 - G^0: curves touch at join point
 - G^1: curves also share common tangent direction at join point
 - G^2: curves also share common center of curvature at join point
- Mathematical Continuity: C^i
 - Guarantees that direction, magnitude of ith order derivative equal
 - C^0: G^i curves touch at join point
 - C^1: curves share common tangent direction / magnitude at join point
 - C^2: curves share second derivative at join point

Review [6]: Bernstein Polynomials – Matrix Form

- Bernstein polynomials can be represented in a matrix form.
- The Bernstein basis functions form a basis for the space of polynomials.
- $x = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4$
- The coefficients a_0, a_1, a_2, a_3, a_4 correspond to the values of the function at the end points of the interval.

Review [7]: Gvs. C1 Continuity

- Geometric Continuity: G^i
 - Guarantees that direction of ith order derivative equal
 - G^0: curves touch at join point
 - G^1: curves also share common tangent direction at join point
 - G^2: curves also share common center of curvature at join point
- Mathematical Continuity: C^i
 - Guarantees that direction, magnitude of ith order derivative equal
 - C^0: G^i curves touch at join point
 - C^1: curves share common tangent direction / magnitude at join point
 - C^2: curves share second derivative at join point
Parametric Bicubic Surface: Generalization of Parametric Cubic Curve

From Curves to Surfaces
- Let one parameter (say v) be held at constant value
- Above will represent a curve
- Surface generated by sweeping all points on boundary curve, e.g., $P(u, 0)$, through cubic trajectories, defined using v, to boundary curve $P(u, 1)$

$$0 \leq u, v \leq 1$$

$$P(u, v) = [x(u, v), y(u, v), z(u, v)]$$

Adapted from slides © 2006 B. McCaul, Dublin City University

Review [8]:
- Parametric Bicubic Surfaces
- Curves
 - Bézier: easier to scan convert (DeCasteljau)
 - Hermite: easier to control via GUI (tangent)
- Bicubic patches
 - Bilinear interpolation
 - Control patch aka Coons patch

Curves & Surfaces
- Acknowledgments - thanks to Eric McKenzie, Edinburgh, from whose Graphics Course some of these slides were adapted.

Acknowledgements: Maya Character Rigging

Aaron Ross
Founder, Digital Arts Guild
http://dr-yo.com
http://www.youtube.com/user/DigitalArtsGuild

Jim Lammers
President
Trinity Animation
http://www.trinity3d.com

Larry Neuberger
Associate Professor, Alfred State SUNY College of Technology
Online Instructor, Art Institute of Pittsburgh
http://poorhousefx.com

Resources [1]:
- Basic Maya Tutorials - Ross
- Animation Tutorials - Lammers
- Examples Online

Resources [2]:
- Animation Tutorials - Lammers
- "Maya Animation" at Animation Arena

Resources [3]:
- Basic Maya Tutorials - Ross
- Animation Tutorials - Lammers
- "Maya Animation" at Animation Arena

Acknowledgements:
Maya Character Rigging
Aaron Ross
President, Digital Arts Guild
http://dr-yo.com
http://www.youtube.com/user/DigitalArtsGuild

Jim Lammers
President
Trinity Animation
http://www.trinity3d.com

Larry Neuberger
Associate Professor, Alfred State SUNY College of Technology
Online Instructor, Art Institute of Pittsburgh
http://poorhousefx.com

Resources [1]:
- Basic Maya Tutorials - Ross
- Animation Tutorials - Lammers
- Examples Online

Resources [2]:
- Animation Tutorials - Lammers
- "Maya Animation" at Animation Arena

Resources [3]:
- Basic Maya Tutorials - Ross
- Animation Tutorials - Lammers
- "Maya Animation" at Animation Arena
Character Modeling in Maya [4]: Driver

Character Modeling in Maya [5]: Blend Shape Deformation Setup

Character Modeling in Maya [6]: Inverse Kinematics (IK)

Character Modeling in Maya [7]: Controlling Deformation & Rotation

Cloth Modeling in Maya [1]: More Driven Keys & Blend Shape

Cloth Modeling in Maya [2]: Output
Summary

- Reading for Next Class: §17.1 – 17.2, Eberly 3rd
- Last Time: Curves & Surfaces
- Piecewise linear, quadratic, cubic curves and their properties
- Interpolation: subdivision (DeCasteljau’s algorithm)
- Bicubic surfaces & bilinear interpolation
 - Maya interface: navigation, menus, tools, primitives
 - GUI & objects (Ross 1); viewports, transforms, & hotkeys (Ross 2)
 - Nodes & attributes (Ross 3); UI, channel box & deformers (Ross 4)
 - Modeling, scene creation, materials (Ross 5)
- Previous Videos (#3): Morphing & Other Special Effects (SFX)
- Next Set of Videos (#4): Modeling & Simulation
- Next Class: Animations 2 – Rotations, Dynamics & Kinematics

Terminology

- Piecewise Polynomial Curves aka Splines
- Continuity: Geometric (G), Mathematical (C)
- Bicubic Surfaces including NURBS Surfaces
- Maya Software for 3-D Modeling & Animation
 - Shelves – groups of tools & action icons; compare palettes, toolbars
 - Hotkeys – key combos for common functions; compare macros
 - Viewports – scene views for editing: orthographic, perspective
 - Channel box – GUI for accessing position, rotation, scale, history
 - Deformers – tools for controlling complex vertex meshes
- Rigging Character Models: Defining Components of Articulated Figure
 - Joints – axis of rotation, angular degree(s) of freedom (DOFs)
 - Bones – attached to joints, rotate about joint axis