Lecture 24 of 41

Collision Handling Part 1 of 2: Separating Axes, Oriented Bounding Boxes

William H. Hsu
Department of Computing and Information Sciences, KSU

Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:

Today: §2.4.3, 8.1, Eberly 2e – see http://bit.ly/ieUq45; GL handout
Next class: Chapter 6, esp. §6.1, Eberly 2e
Lecture Outline

- Reading for Last Class: Chapter 10, 13, §17.3 – 17.5, Eberly 2e
- Reading for Today: §2.4.3, 8.1, Eberly 2e, GL handout
- Reading for Next Class: Chapter 6, Esp. §6.1, Eberly 2e
- Last Time: Quaternions Concluded
 - How quaternions work – properties, matrix equivalence, arithmetic
 - Composing rotations by quaternion multiplication
 - Incremental rotation and error issues
- Videos 4: Modeling & Simulation, Visualization; VR/VE/VA/AR
 - Virtual reality, environments, artifacts (VR/VE/VA); augmented reality
 - Relationship among visualization, simulation, & animation
- Today: Collision Detection Part 1 of 2
 - Test-intersection queries vs. find-intersection queries
 - Static: stationary objects (both not moving)
 - Dynamic: moving objects (one or both)
 - Distance vs. intersection methods
Where We Are

<table>
<thead>
<tr>
<th>Lab</th>
<th>Topic</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Lab 4a: Animation Basics</td>
<td>Flash animation handout</td>
</tr>
<tr>
<td>22</td>
<td>Animation 2: Rotations, Dynamics, Kinematics</td>
<td>Chapter 17, esp. §17.1 – 17.2</td>
</tr>
<tr>
<td>23</td>
<td>Demos 4: Modeling & Simulation, Rotations</td>
<td>Chapter 10, 13, §17.3 – 17.5</td>
</tr>
<tr>
<td>24</td>
<td>Collisions 1: axes, OBBs, Lab 4b</td>
<td>§2.4.3, 3.1, GL handout</td>
</tr>
<tr>
<td>25</td>
<td>Spatial Sorting: Binary Space Partitioning</td>
<td>Chapter 6, esp. §6.1</td>
</tr>
<tr>
<td>26</td>
<td>Demos 5: More CGA: Picking; HW/Exam</td>
<td>Chapter 7, § 8.4</td>
</tr>
<tr>
<td>27</td>
<td>Lab 5a: Interaction Handling</td>
<td>§ 8.3 – 8.4, 4.1, 4.2, 5.0, 5.6, 9.1</td>
</tr>
<tr>
<td>28</td>
<td>Collisions 2: Dynamic, Particle Systems</td>
<td>§ 9.1, particle system handout</td>
</tr>
<tr>
<td></td>
<td>Exam 2 review; Hour Exam 2 (evening)</td>
<td>Chapters 5 – 6, 7 – 8, 12, 17</td>
</tr>
<tr>
<td>29</td>
<td>Lab 5b: Particle Systems</td>
<td>Particle system handout</td>
</tr>
<tr>
<td>30</td>
<td>Animation 3: Control & IK</td>
<td>§ 5.3, CGA handout</td>
</tr>
<tr>
<td>31</td>
<td>Ray Tracing 1: intersections, ray trees</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>32</td>
<td>Lab 6a: Ray Tracing Basics with POV-Ray</td>
<td>RT handout</td>
</tr>
<tr>
<td>33</td>
<td>Ray Tracing 2: advanced topic survey</td>
<td>Chapter 15, RT handout</td>
</tr>
<tr>
<td>34</td>
<td>Visualization 1: Data (Quantities & Evidence)</td>
<td>Tufta handout (1)</td>
</tr>
<tr>
<td>35</td>
<td>Lab 6b: More Ray Tracing</td>
<td>RT handout</td>
</tr>
<tr>
<td>36</td>
<td>Visualization 2: Objects</td>
<td>Tufta handout (2 & 4)</td>
</tr>
<tr>
<td>37</td>
<td>Color Basics; Term Project Prep</td>
<td>Color handout</td>
</tr>
<tr>
<td>38</td>
<td>Lab 7: Fractals & Terrain Generation</td>
<td>Fractals/Terrain handout</td>
</tr>
<tr>
<td>39</td>
<td>Visualization 3: Processes; Final Review 1</td>
<td>Tufta handout (3)</td>
</tr>
<tr>
<td>40</td>
<td>Project presentations 1; Final Review 2</td>
<td>–</td>
</tr>
<tr>
<td>41</td>
<td>Project presentations 2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
<td>Ch. 1 – 8, 10 – 15, 17, 20</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set, heavily-shaded entries, that of a machine problem (programming assignment), blue-shaded entries, that of a paper review, and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
Acknowledgements:
Quaternions, Collision Handling

Rick Parent
Professor
Department of Computer Science and Engineering
Ohio State University
http://www.cse.ohio-state.edu/~parent/

David C. Brogan
Visiting Assistant Professor, Computer Science Department, University of Virginia
http://www.cs.virginia.edu/~dbrogan/
Susquehanna International Group (SIG)
http://www.sig.com

Steve Rotenberg
Visiting Lecturer
Graphics Lab
University of California – San Diego
CEO/Chief Scientist, PixelActive
http://graphics.ucsd.edu
Review [1]:
Fixed Angles & Euler Angles

Rotation about x axis
(Roll)

Rotation about y axis
(Pitch)

Rotation about z axis
(Yaw)

Adapted from slides © 2007 – 2011 R. Parent, Ohio State University
Review [2]:
Axis-Angle to Quaternion Conversion

A quaternion is a 4-D unit vector \(q = [x \ y \ z \ w] \)
- It lies on the unit hypersphere \(x^2 + y^2 + z^2 + w^2 = 1 \)

For rotation about (unit) axis \(v \) by angle \(\theta \)
- vector part = \((\sin(\theta/2)) \ v \ = [x \ y \ z] \)
- scalar part = \((\cos(\theta/2)) \ = w \)
- \((\sin(\theta/2) \ n_x, \ \sin(\theta/2) \ n_y, \ \sin(\theta/2) \ n_z, \ \cos(\theta/2)) \)

Only a unit quaternion encodes a rotation - normalize

Adapted from slides 2000 – 2004 D. Brogan, University of Virginia
Review [3]: Quaternion to RM Conversion

Rotation matrix corresponding to a quaternion:

\[
\begin{bmatrix}
1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\
2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\
2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2
\end{bmatrix}
\]

Quaternion Multiplication

- \(q_1 \cdot q_2 = [v_1, w_1] \cdot [v_2, w_2] = [(w_1v_2 + w_2v_1 + (v_1 \times v_2)), w_1w_2 - v_1, v_2] \)
- quaternion \(\cdot \) quaternion = quaternion
- this satisfies requirements for mathematical group
- Rotating object twice according to two different quaternions is equivalent to one rotation according to product of two quaternions

Adapted from slides © 2000 – 2004 D. Brogan, University of Virginia
Review [4]: Advantage – Interpolation

Biggest advantage of quaternions

- Interpolation
- Cannot linearly interpolate between two quaternions because it would speed up in middle
- Instead, Spherical Linear Interpolation, slerp()
- Used by modern video games for third-person perspective
- Why?

Hint: see http://youtu.be/-jBKKV2V8eU
If we want to do a linear interpolation between two points \(a \) and \(b \) in normal space

\[
\text{Lerp}(t,a,b) = (1-t)a + (t)b
\]

where \(t \) ranges from 0 to 1

- Note that the \(\text{Lerp} \) operation can be thought of as a weighted average (convex)
- We could also write it in its additive blend form:

\[
\text{Lerp}(t,a,b) = a + t(b-a)
\]
Interpolating Quaternions [2]: Slerp

- If we want to interpolate between two points on a sphere (or hypersphere), we don’t just want to Lerp between them.
- Instead, we will travel across the surface of the sphere by following a ‘great arc’.
Interpolating Quaternions [3]: Slerp Optimization

- Remember that there are two redundant vectors in quaternion space for every unique orientation in 3D space.
- What is the difference between:

 \[\text{Slerp}(t, a, b) \quad \text{and} \quad \text{Slerp}(t, -a, b) \]

- One of these will travel less than 90 degrees while the other will travel more than 90 degrees across the sphere.
- This corresponds to rotating the 'short way' or the 'long way'.
- Usually, we want to take the short way, so we negate one of them if their dot product is \(< 0\).
Review [5]:
Dynamics & Kinematics

- **Dynamics**: Study of Motion & Changes in Motion
 - **Forward**: model forces over time to find state, e.g.,
 - Given: initial position p_0, velocity v_0, gravitational constants
 - Calculate: position p_t at time t
 - **Inverse**: given state and constraints, calculate forces, e.g.,
 - Given: desired position p_t at time t, gravitational constants
 - Calculate: position p_0, velocity v_0 needed

- **Kinematics**: Study of Motion without Regard to Causative Forces
 - Modeling systems – e.g., articulated figure
 - **Inverse**: finding angles given desired position (http://bit.ly/hsyTb0)
Review [6]: Visualization & Simulation

Deepwater Horizon Oil Spill (20 Apr 2010)
http://bit.ly/9QHax4
120-day images © 2010 NOAA, http://1.usa.gov/c02xuQ

• Wilhelmson et al. (2004)
http://youtu.be/EgumU0Ns1YI
http://avl.ncsa.illinois.edu

120-day simulation using
15 Apr 1993 weather conditions

120-day simulation using
2010 conditions
© 2010 National Center for Supercomputing Applications (NCSA)
http://youtu.be/pE-1G_476nA

132-day simulation using
2010 conditions
© 2010 National Center for Supercomputing Applications (NCSA)
http://youtu.be/pE-1G_476nA
Review [7]: Virtual Reality (VR)

- Virtual Reality: Computer-Simulated Environments
- Physical Presence: Real & Imaginary
- Hardware: User Interface
 - Head-mounted display (HMD), gloves – see PopOptics goggles (left)
 - VR glasses, wand, etc. – see NCSA CAVE (right)

Review [8]: Virtual Environments (VE)

- **Virtual Environment:** Part of Virtual Reality Experience
- **Other Parts**
Review [9]: Augmented Reality (AR)

- **Augmented Reality**: Computer-Generated (CG) Sensory Overlay
- Added to Physical, Real-World Environment

© 2010 TED Talks**
Today’s material:

- **View Frustum clipping**
 - §2.4.3, p. 70 – 77, 2e
 - §3.4.3, p. 93 – 99, & §3.7.2, p. 133 – 136, 1e

- **Collision detection: separating axes**
 - §8.1, p. 393 – 443, 2e
 - §6.4. p. 203 – 214, 1e

Later:

- **Distance methods**
 - Chapter 14, p. 639 – 679, 2e
 - §2.6, p. 38 – 77, 1e

- **Intersection methods**
 - Chapter 15, p. 681 – 717, 2e
 - §6.2 – 6.5, p. 188 – 243, 1e
View Frustum Clipping: Triangle Splitting

Figure 3.4 Four configurations for triangle splitting. Only the triangles in the shaded region are important, so the quadrilaterals outside are not split.
Collision Handling: Detection vs. Response

- Collision Detection
 - Collision detection is a geometric problem
 - Given two moving objects defined in an initial and final configuration, determine if they intersected at some point between the two states

- Collision Response
 - The response to collisions is the actual physics problem of determining the unknown forces (or impulses) of the collision
Collision Detection [1]:
Technical Problem Defined

- ‘Collision detection’ is really a geometric intersection detection problem
- Main subjects
 - Intersection testing (triangles, spheres, lines…)
 - Optimization structures (octree, BSP…)
 - Pair reduction (reducing N² object pair testing)
Collision Detection [2]:
Intersections – Testing vs. Finding

- General goals: given two objects with current and previous orientations specified, determine if, where, and when the two objects intersect.
- Alternative: given two objects with only current orientations, determine if they intersect.
- Sometimes, we need to find all intersections. Other times, we just want the first one. Sometimes, we just need to know if the two objects intersect and don’t need the actual intersection data.
Collision Detection [3]: Queries – Test- vs. Find-Intersection

• **Test-Intersection**: Determine If Objects Intersect
 - Static: test whether they do at given instant
 - Dynamic: test whether they intersect at any point along trajectories

• **Find-Intersection**: Determine Intersection (or Contact) Set of Objects
 - Static: intersection set (compare: A ∩ B)
 - Dynamic: contact time (interval of overlap), sets (depends on time)

Adapted from *3D Game Engine Design* © 2000 D. H. Eberly
Collision Detection [3]: Queries – Distance vs. Intersection

- **Distance-Based**
 - Parametric representation of object boundaries/interiors
 - Want: closest points on two objects (to see whether they intersect)
 - Use: constrained minimization to solve for closest points

- **Intersection-Based**
 - Also uses parametric representation
 - Want: overlapping subset of interior of two objects
 - General approach: equate objects, solve for parameters
 - Use one of two kinds of solution methods
 - Analytical (when feasible to solve exactly – e.g., OBBs)
 - Numerical (approximate region of overlap)
 - Solving for parameters in equation
 - Harder to compute than distance-based; use only when needed

Adapted from 3D Game Engine Design © 2000 D. H. Eberly
Collision Detection [4]:
Primitives

- We often deal with various different ‘primitives’ that we describe our geometry with. Objects are constructed from these primitives.

- Examples
 - Triangles
 - Spheres
 - Cylinders
 - AABB = axis aligned bounding box
 - OBB = oriented bounding box

- At the heart of the intersection testing are various primitive-primitive tests.
Collision Detection [5]: Particle Collisions

- For today, we will mainly be concerned with the problem of testing if particles collide with solid objects.
- A particle can be treated as a line segment from its previous position to its current position.
- If we are colliding against static objects, then we just need to test if the line segment intersects the object.
- Colliding against moving objects requires some additional modifications that we will also look at.

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [6]:
Code – Basic Components

```cpp
class Segment {
    Vector3 A, B;
};

class Intersection {
    Vector3 Position;
    Vector3 Normal;
    Material *Mtl;  // Mtl can contain info about elasticity, friction, etc
};
```

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [7]:
Code – Primitives

class Primitive {
 virtual bool TestSegment(const Segment &s, Intersection &i);
};

class Sphere:public Primitive…
class Triangle:public Primitive…
class Cylinder:public Primitive…
Collision Detection [8]: Segment vs. Triangle – Query

Does segment \(ab \) intersect triangle \(v_0v_1v_2 \) ?

\[a \quad \bullet \quad x \quad b \]
\[v_0 \quad v_1 \quad v_2 \]

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [9]: Segment vs. Triangle – Solution

- First, compute signed distances of a and b to plane

 \[d_a = (a - v_0) \cdot n \]

 \[d_b = (b - v_0) \cdot n \]

- Reject if both are above or both are below triangle
- Otherwise, find intersection point \(x \)

\[x = \frac{d_a b - d_b a}{d_a - d_b} \]
Collision Detection [10]:
Segment vs. Triangle – Point Test

- Is point x inside the triangle?
 \[(x-v_0) \cdot ((v_2-v_0) \times n) > 0\]
- Test all 3 edges

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [11]: Faster Triangle – Point Containment

- Reduce to 2D: remove smallest dimension
- Compute barycentric coordinates
 \[x' = x - v_0 \]
 \[e_1 = v_1 - v_0 \]
 \[e_2 = v_2 - v_0 \]
 \[\alpha = (x' \times e_2) / (e_1 \times e_2) \]
 \[\beta = (x' \times e_1) / (e_1 \times e_2) \]
- Reject if \(\alpha < 0, \beta < 0 \) or \(\alpha + \beta > 1 \)
Collision Detection [12]: Segment vs. Mesh

- To test a line segment against a mesh of triangles, simply test the segment against each triangle.
- Sometimes, we are interested in only the ‘first’ hit along the segment from a to b. Other times, we want all intersections. Still other times, we just need any intersection.
- Testing against lots of triangles in a large mesh can be time consuming. We will look at ways to optimize this later.

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [13]:
Segment vs. Moving Mesh

- \(M_0 \) is the object’s matrix at time \(t_0 \)
- \(M_1 \) is the matrix at time \(t_1 \)
- Compute delta matrix:
 \[
 M_\Delta = M_0^{-1} \cdot M_1 \\
 \]
- Transform a by \(M_\Delta \)
 \[
 a' = a \cdot M_\Delta \\
 \]
- Test segment \(a'b \) against object with matrix \(M_1 \)
Collision Detection [14]: Triangle vs. Triangle – Query

Given two triangles: $T_1 (u_0u_1u_2)$ and $T_2 (v_0v_1v_2)$
Collision Detection [15]:
Triangles vs. Triangle – Plane Equations

Step 1: Compute plane equations

\[n_2 = (v_1 - v_0) \times (v_2 - v_0) \]
\[d_2 = -n_2 \cdot v_0 \]

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [16]:
Triangles vs. Triangle – Distances

- Step 2: Compute signed distances of T_1 vertices to plane of T_2:
 \[d_i = n_2 \cdot u_i + d_2 \quad (i=0,1,2) \]
- Reject if all $d_i < 0$ or all $d_i > 0$
- Repeat for vertices of T_2 against plane of T_1

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [17]:
Triangles vs. Triangle – Intersection

- Step 3: Find intersection points
- Step 4: Determine if segment pq is inside triangle or intersects triangle edge
Collision Detection [18]: Mesh vs. Mesh – Kinds of Collisions

- Geometry: points, edges, faces
- Collisions: p2p, p2e, p2f, e2e, e2f, f2f
- Relevant ones: p2f, e2e (point to face & edge to edge)
- Multiple simultaneous collisions

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [19]:
Moving Mesh vs. Moving Mesh

- Two options: ‘point sample’ and ‘extrusion’
- Point sample:
 - If objects intersect at final positions, do a binary search backwards to find the time when they first hit and compute the intersection
 - This approach can tend to miss thin objects
- Extrusion:
 - Test ‘4-dimensional’ extrusions of objects
 - In practice, this can be done using only 3D math

Adapted from slides 2004 – 2005 S. Rotenberg, UCSD
Collision Detection [20]:
Moving Meshes: Extrusion

- Use ‘delta matrix’ trick to simplify problem so that one mesh is moving and one is static
- Test moving vertices against static faces (and the opposite, using the other delta matrix)
- Test moving edges against static edges (moving edges form a quad (two triangles))
Collision Detection [21]:
Intersection Issues

- Performance
- Memory
- Accuracy
- Floating point precision
Static Intersection [1]: Sphere-Swept Volumes

- **Sphere**
 - Locus of points in 3-D equidistant from center point
 - Rotational sweep of circle (hollow sphere) or disc (solid **ball**)
 - “Null” sweep of sphere (invariant under rotation, translation by \(0\))

- **Capsule**: Translational Sweep of Sphere Along Line Segment

- **Lozenge**: Sweep of Sphere Across Rectangle

Adapted from *3D Game Engine Design* © 2000 D. H. Eberly
Table 6.1 Relationship between sphere-swept volumes and distance calculators (pnt, point; seg, line segment; rct, rectangle).

<table>
<thead>
<tr>
<th></th>
<th>Sphere</th>
<th>Capsule</th>
<th>Lozenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>dist(pnt,pnt)</td>
<td>dist(pnt,seg)</td>
<td>dist(pnt,rct)</td>
</tr>
<tr>
<td>Capsule</td>
<td>dist(seg,pnt)</td>
<td>dist(seg,seg)</td>
<td>dist(seg,rct)</td>
</tr>
<tr>
<td>Lozenge</td>
<td>dist(rct,pnt)</td>
<td>dist(rct,seg)</td>
<td>dist(rct,rct)</td>
</tr>
</tbody>
</table>
Dynamic Intersection [1]: One Moving Object

Table 6.6 Relationship between sphere-swept volumes and distance calculators when the second object is moving (\(pnt\), point; \(seg\), line segment; \(rct\), rectangle; \(pgm\), parallelogram; \(ppd\), parallelepiped; \(hex\), hexagon).

<table>
<thead>
<tr>
<th>Dynamic</th>
<th>Sphere</th>
<th>Capsule</th>
<th>Lozenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>(\text{dist}(pnt,</td>
<td>pnt,seg</td>
<td>))</td>
</tr>
<tr>
<td>Sphere</td>
<td>(\text{dist}(seg,</td>
<td>pnt,seg</td>
<td>))</td>
</tr>
<tr>
<td>Capsule</td>
<td>(\text{dist}(rct,</td>
<td>pnt,seg</td>
<td>))</td>
</tr>
</tbody>
</table>

3D Game Engine Design © 2000 D. H. Eberly
Dynamic Intersection [2]:
Two Moving Objects – Separating Axes

Table 6.7 Values for R, R_0, and R_1 for the separating axis test $R > R_0 + R_1$ for two boxes in the direction of motion.

<table>
<thead>
<tr>
<th>\vec{L}</th>
<th>R_0</th>
<th>R_1</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{W} \times \vec{A}_0$</td>
<td>$a_1</td>
<td>\alpha_2</td>
<td>+ a_2</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{A}_1$</td>
<td>$a_0</td>
<td>\alpha_2</td>
<td>+ a_2</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{A}_2$</td>
<td>$a_0</td>
<td>\alpha_1</td>
<td>+ a_1</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{B}_0$</td>
<td>$\sum_{i=0}^{2} a_i</td>
<td>c_1\beta_2 - c_2\beta_1</td>
<td>$</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{B}_1$</td>
<td>$\sum_{i=0}^{2} a_i</td>
<td>c_0\beta_2 - c_1\beta_0</td>
<td>$</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{B}_2$</td>
<td>$\sum_{i=0}^{2} a_i</td>
<td>c_1\beta_1 - c_1\beta_0</td>
<td>$</td>
</tr>
</tbody>
</table>

3D Game Engine Design © 2000 D. H. Eberly
Preview:
Collision Response & Optimization

- What Happens After Collision Is Detected?
 - Contact & application of force vs. impact & impulse
 - Compression: deformation of solid
 - Restitution: springing back of solid
 - Friction?
 - Secondary collisions due to changes in trajectories
 - Bouncing?

- Optimization
 - Spatial partitioning: bounding volume hierarchies (BVHs) revisited
 - Binary space partitioning (BSP) trees
 - k-d trees
 - Quadtrees & octrees
 - Volume graphics: uniform grids and data parallelism

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Summary

- Reading for Last Class: Chapter 10, 13, §17.3 – 17.5, Eberly 2e
- Reading for Today: §2.4.3, 8.1, Eberly 2e, GL handout
- Reading for Next Class: Chapter 6, Esp. §6.1, Eberly 2e
- Last Time: Quaternions Concluded
 - How quaternions work – properties, matrix equivalence, arithmetic
 - Composing rotations by quaternion multiplication
 - Incremental rotation and error issues
- Review: Virtual Reality & Virtual Environments; Augmented Reality
- Today: Collision Detection Part 1 of 2
 - Static: stationary objects (both not moving)
 - Dynamic: moving objects (one or both)
 - Test-intersection queries vs. find-intersection queries
 - Distance vs. intersection methods
Terminology

- **Visualization** – Communicating with Images, Diagrams, Animations
- **VR, VE, VA, AR**
 - Virtual Reality: computer-simulated environments, objects
 - Virtual Environment: part of VR dealing with surroundings
 - Virtual Artifacts: part of VR dealing with simulated objects
 - Augmented Reality: CG sensory overlay on real-world images
- **Collision Detection**
 - Static: stationary objects (both not moving)
 - Dynamic: moving objects (one or both)
 - Queries
 - Test-intersection: determine whether objects do/will intersect
 - Find-intersection: calculate intersection set or contact set, time
 - Parametric methods: use parameters to describe objects
 - Distance-based: constrained minimization (closest points)
 - Intersection-based: solving for parameters in equation