Spatial Sorting: Binary Space Partitioning
Quadtrees & Octrees

William H. Hsu
Department of Computing and Information Sciences, KSU

Public mirror web site: http://www.kddresearch.org/Courses/CIS636
Instructor home page: http://www.cis.ksu.edu/~bhsu

Readings:
Today: Chapter 6, esp. §6.1, Eberly 2e – see http://bit.ly/ieUq45
Next class: Chapter 7, §8.4, Eberly 2e
Lecture Outline

- Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout
- Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e
- Reading for Next Class: Chapter 7, §8.4, Eberly 2e
- Last Time: Collision Handling, Part 1 of 2
 - Static vs. dynamic objects, testing vs. finding intersections
 - Distance vs. intersection methods
 - Triangle point containment test
 - Method of separating axes
- Today: Adaptive Spatial Partitioning
 - Visible Surface Determination (VSD) revisited
 - Constructive Solid Geometry (CSG) trees
 - Binary Space Partitioning (BSP) trees
 - Quadtrees: adaptive 2-D (planar) subdivision
 - Octrees: adaptive 3-D (spatial) subdivision
- Coming Soon: Volume Graphics & Voxels
Where We Are

<table>
<thead>
<tr>
<th>Lab/Exam</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Lab 4a: Animation Basics</td>
<td>Flash animation handout</td>
</tr>
<tr>
<td>22</td>
<td>Animation 2: Rotations; Dynamics, Kinematics</td>
<td>Chapter 17, esp. §17.1 – 17.2</td>
</tr>
<tr>
<td>23</td>
<td>Demos 4: Modeling & Simulation, Rotations</td>
<td>Chapter 10, 13, §17.3 – 17.5</td>
</tr>
<tr>
<td>24</td>
<td>Collisions 1: axes, OBBs, Lab 4b</td>
<td>§24.3, 8.1, GL handout</td>
</tr>
<tr>
<td>25</td>
<td>Spatial Sorting; Binary Space Partitioning</td>
<td>Chapter 6, esp. §6.1</td>
</tr>
<tr>
<td>26</td>
<td>Demos 5: More CGA: Picking, HW/Exam</td>
<td>Chapter 7, §8.4</td>
</tr>
<tr>
<td>27</td>
<td>Lab 5a: Interaction Handling</td>
<td>§8.3 – 8.4, 4.2, 5.0, 5.6, 9.1</td>
</tr>
<tr>
<td>28</td>
<td>Collisions 2: Dynamic, Particle Systems</td>
<td>§9.1, particle system handout</td>
</tr>
<tr>
<td>29</td>
<td>Exam 2 review; Hour Exam 2 (evening)</td>
<td>Chapters 5 – 8, 7 – 8, 12, 17</td>
</tr>
<tr>
<td>30</td>
<td>Lab 5b: Particle Systems</td>
<td>Particle system handout</td>
</tr>
<tr>
<td>31</td>
<td>Animation 3: Control & IK</td>
<td>§5.3, CGA handout</td>
</tr>
<tr>
<td>32</td>
<td>Ray Tracing 1: intersections, ray trees</td>
<td>Chapter 14</td>
</tr>
<tr>
<td>33</td>
<td>Lab 6a: Ray Tracing Basics with POV-Ray</td>
<td>RT handout</td>
</tr>
<tr>
<td>34</td>
<td>Ray Tracing 2: advanced topic survey</td>
<td>Chapter 15, RT handout</td>
</tr>
<tr>
<td>35</td>
<td>Visualization 1: Data (Quantities & Evidence)</td>
<td>Tutte handout (1)</td>
</tr>
<tr>
<td>36</td>
<td>Lab 6b: More Ray Tracing</td>
<td>RT handout</td>
</tr>
<tr>
<td>37</td>
<td>Visualization 2: Objects</td>
<td>Tutte handout (2 & 4)</td>
</tr>
<tr>
<td>38</td>
<td>Color Basics; Term Project Prep</td>
<td>Color handout</td>
</tr>
<tr>
<td>39</td>
<td>Lab 7: Fractals & Terrain Generation</td>
<td>Fractals/Terrain handout</td>
</tr>
<tr>
<td>40</td>
<td>Visualization 3: Processes; Final Review</td>
<td>Tutte handout (3)</td>
</tr>
<tr>
<td>41</td>
<td>Project presentations 1; Final Review 2</td>
<td>–</td>
</tr>
<tr>
<td>42</td>
<td>Project presentations 2</td>
<td>–</td>
</tr>
<tr>
<td>43</td>
<td>Final Exam</td>
<td>Ch. 1 – 8, 10 – 15, 17, 20</td>
</tr>
</tbody>
</table>

Lightly-shaded entries denote the due date of a written problem set, heavily-shaded entries, that of a machine problem (programming assignment), blue-shaded entries, that of a paper review, and the green-shaded entry, that of the term project.

Green, blue and red letters denote exam review, exam, and exam solution review dates.
Acknowledgements: Intersections, Containment – Eberly 1e

Last lecture’s material:

- View Frustum clipping
 - §2.4.3, p. 70 – 77, 2e
 - §3.4.3, p. 93 – 99, & §3.7.2, p. 133 – 136, 1e

- Collision detection: separating axes
 - §8.1, p. 393 – 443, 2e
 - §6.4, p. 203 – 214, 1e

Later:

- Distance methods
 - Chapter 14, p. 639 – 679, 2e
 - §2.6, p. 38 – 77, 1e

- Intersection methods
 - Chapter 15, p. 681 – 717, 2e
 - §6.2 – 6.5, p. 188 – 243, 1e
Review [1]: View Frustum Clipping

Figure 3.4 Four configurations for triangle splitting. Only the triangles in the shaded region are important, so the quadrilaterals outside are not split.

3D Game Engine Design © 2000 D. H. Eberly
Review [2]:
Collision Detection vs. Response

- **Collision Detection**
 - Collision detection is a geometric problem
 - Given two moving objects defined in an initial and final configuration, determine if they intersected at some point between the two states

- **Collision Response**
 - The response to collisions is the actual physics problem of determining the unknown forces (or impulses) of the collision

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Review [3]: Queries – Test- vs. Find-Intersection

- **Test-Intersection**: Determine If Objects Intersect
 - Static: test whether they do at given instant
 - Dynamic: test whether they intersect at any point along trajectories

- **Find-Intersection**: Determine Intersection (or Contact) Set of Objects
 - Static: intersection set (compare: $A \cap B$)
 - Dynamic: contact time (interval of overlap), sets (depends on time)

Adapted from *3D Game Engine Design* © 2000 D. H. Eberly
Review [4]: Queries – Distance vs. Intersection

- **Distance-Based**
 - Parametric representation of object boundaries/interiors
 - Want: closest points on two objects (to see whether they intersect)
 - Use: constrained minimization to solve for closest points

- **Intersection-Based**
 - Also uses parametric representation
 - Want: overlapping subset of interior of two objects
 - General approach: equate objects, solve for parameters
 - Use one of two kinds of solution methods
 - Analytical (when feasible to solve exactly – e.g., OBBs)
 - Numerical (approximate region of overlap)
 - Solving for parameters in equation
 - Harder to compute than distance-based; use only when needed
Review [5]: Segment vs. Triangle – Solution

- First, compute signed distances of a and b to plane
 \[d_a = (a - v_0) \cdot n \]
 \[d_b = (b - v_0) \cdot n \]

- Reject if both are above or both are below triangle
- Otherwise, find intersection point \(x \)
 \[x = \frac{d_a b - d_b a}{d_a - d_b} \]
Review [6]: Segment vs. Triangle – Point Test

- Is point x inside the triangle?
 $$(x - v_0) \cdot ((v_2 - v_0) \times n) > 0$$

- Test all 3 edges

Adapted from slides © 2004 – 2005 S. Rotenberg, UCSD
Review [7]: Faster Triangle – Point Containment

- Reduce to 2D: remove smallest dimension
- Compute barycentric coordinates
 \[x' = x - v_0 \]
 \[e_1 = v_1 - v_0 \]
 \[e_2 = v_2 - v_0 \]
 \[\alpha = (x' \times e_2) / (e_1 \times e_2) \]
 \[\beta = (x' \times e_1) / (e_1 \times e_2) \]
- Reject if \(\alpha < 0 \), \(\beta < 0 \) or \(\alpha + \beta > 1 \)
Review [8]:
Sphere-Swept Volumes & Distances

Line Segment-Sphere Intersection

Table 6.1 Relationship between sphere-swept volumes and distance calculators (*pnt*, point; *seg*, line segment; *rct*, rectangle).

<table>
<thead>
<tr>
<th></th>
<th>Sphere</th>
<th>Capsule</th>
<th>Lozenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>dist(pnt,pnt)</td>
<td>dist(pnt,seg)</td>
<td>dist(pnt,rct)</td>
</tr>
<tr>
<td>Capsule</td>
<td>dist(seg,pnt)</td>
<td>dist(seg,seg)</td>
<td>dist(seg,rct)</td>
</tr>
<tr>
<td>Lozenge</td>
<td>dist(rct,pnt)</td>
<td>dist(rct,seg)</td>
<td>dist(rct,rct)</td>
</tr>
</tbody>
</table>

Adapted from *3D Game Engine Design* © 2000 D. H. Eberly
Review [9]: Method of Separating Axes

Table 6.7: Values for R, R_0, and R_1 for the separating axis test $R > R_0 + R_1$ for two boxes in the direction of motion.

<table>
<thead>
<tr>
<th>\vec{L}</th>
<th>R_0</th>
<th>R_1</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{W} \times \vec{A}_0$</td>
<td>$a_1</td>
<td>\alpha_2</td>
<td>+ a_2</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{A}_1$</td>
<td>$a_0</td>
<td>\alpha_2</td>
<td>+ a_2</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{A}_2$</td>
<td>$a_0</td>
<td>\alpha_1</td>
<td>+ a_1</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{B}_0$</td>
<td>$\sum_{i=0}^{2} a_i</td>
<td>c_i</td>
<td>\beta_2 - c_2</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{B}_1$</td>
<td>$\sum_{i=0}^{2} a_i</td>
<td>c_i</td>
<td>\beta_2 - c_2</td>
</tr>
<tr>
<td>$\vec{W} \times \vec{B}_2$</td>
<td>$\sum_{i=0}^{2} a_i</td>
<td>c_i</td>
<td>\beta_1 - c_1</td>
</tr>
</tbody>
</table>

3D Game Engine Design © 2000 D. H. Eberly

Acknowledgements:
Collisions, BSP/Quadtrees/Octrees

Steve Rotenberg
Visiting Lecturer
Graphics Lab
University of California – San Diego
CEO/Chief Scientist, PixelActive
http://graphics.ucsd.edu

Glenn G. Chappell
Associate Professor
Department of Computer Science
University of Alaska Fairbanks
http://www.cs.uaf.edu/~chappell/
Data Structures for Scenes [1]:
Four Tree Representations

- **Scene Graphs**
 - Organized by how scene is constructed
 - Nodes hold objects

- **Constructive Solid Geometry (CSG) Trees**
 - Organized by how scene is constructed
 - Leaves hold 3-D primitives
 - Internal nodes hold set operations

- **Binary Space Partitioning (BSP) Trees**
 - Organized by spatial relationships in scene
 - Nodes hold facets (in 3-D, polygons)

- **Quadtrees & Octrees**
 - Organized spatially
 - Nodes represent regions in space
 - Leaves hold objects

Adapted from slides © 2004 G. G. Chappell, UAF
We think of scene graphs as looking like the tree on the left. However, it is often convenient to implement them as shown on the right.

- Implementation is a B-tree.
- Child pointers are first-logical-child and next-logical-sibling.
- Then traversing the logical tree is a simple pre-order traversal of the physical tree. This is how we draw.
In Constructive Solid Geometry (CSG), we construct a scene out of primitives representing solid 3-D shapes. Existing objects are combined using set operations (union, intersection, set difference).

- **We represent a scene as a binary tree.**
 - Leaves hold primitives.
 - Internal nodes, which always have two children, hold set operations.
 - Order of children matters!

- CSG trees are useful for things other than rendering.
 - Intersection tests (collision detection, etc.) are not too hard. (Thus: ray tracing.)
- CSG does not integrate well with pipeline-based rendering, so we are not covering it in depth right now.
 - How about a project on CSG?
Binary Space Partitioning Trees [1]: Idea

- **BSP tree:** very different way to represent a scene
 - Nodes hold facets
 - Structure of tree encodes spatial information about the scene

- **Applications**
 - Visible Surface Determination (VSD) aka Hidden Surface Removal
Binary Space Partitioning Trees [2]: Definition

- **BSP tree**: type of binary tree
 - Nodes can have 0, 1, or two children
 - Order of child nodes matters, and if a node has just 1 child, it matters whether this is its left or right child

- **Each node holds a facet**
 - This may be only part of a facet from original scene
 - When constructing a BSP tree, we may need to split facets

- **Organization**
 - Each facet lies in a unique plane
 - In 2-D, a unique line
 - For each facet, we choose one side of its plane to be “outside”
 - Other direction: “inside”
 - This can be the side the normal vector points toward
 - Rule: For each node
 - Its left descendant subtree holds only facets “inside” it
 - Its right descendant subtree holds only facets “outside” it
To construct a BSP tree, we need
- List of facets (with vertices)
- “Outside” direction for each

Procedure
- Begin with empty tree
- Iterate through facets, adding new node to tree for each new facet
- First facet goes in root node.
- For each subsequent facet, descend through tree, going left or right depending on whether facet lies inside or outside the facet stored in relevant node
 - If facet lies partially inside & partially outside, split it along plane [line] of facet
 - Facet becomes two “partial” facets
 - Each inherits its “outside” direction from original facet
 - Continue descending through tree with each partial facet separately
- Finally, (partial) facet is added to current tree as leaf
Suppose we are given the following (2-D) facets and "outside" directions:

- We iterate through the facets in numerical order
 - Facet 1 becomes the root
 - Facet 2 is inside of 1
 - Thus, after facet 2, we have the following BSP tree:

- Facet 3 is partially inside facet 1 and partially outside.
 - We split facet 3 along the line containing facet 1
 - The resulting facets are 3a and 3b
 - They inherit their "outside" directions from facet 3

- We place facets 3a and 3b separately
 - Facet 3a is inside facet 1 and outside facet 2
 - Facet 3b is outside facet 1

The final BSP tree looks like this:
Important use of BSP trees: provide back-to-front (or front-to-back) ordering of facets in scene, from point of view of observer

- When we say “back-to-front” ordering, we mean that no facet comes before something that appears directly behind it
- This still allows nearby facets to precede those farther away
- Key idea: All descendants on one side of facet can come before facet, which can come before all descendants on other side

Procedure

- For each facet, determine on which side of it observer lies
- Back-to-front ordering: in-order traversal of tree where subtree opposite from observer comes before subtree on same side
Procedure:
- For each facet, determine on which side of it the observer lies.
- Back-to-front ordering: Do an in-order traversal of the tree in which the subtree opposite from the observer comes before the subtree on the same side as the observer.

Our observer is inside 1, outside 2, inside 3a, outside 3b.

Resulting back-to-front ordering: 3b, 1, 2, 3a.

Is this really back-to-front?
BSP Trees: What Are They Good For?

- BSP trees are primarily useful when a back-to-front or front-to-back ordering is desired:
 - For HSR
 - For translucency via blending
- Since it can take some time to construct a BSP tree, they are useful primarily for:
 - Static scenes
 - Some dynamic objects are acceptable
- BSP-tree techniques are generally a waste of effort for small scenes. We use them on:
 - Large, complex scenes
Order in which we iterate through the facets can matter a great deal
- Consider our simple example again
- If we change the ordering, we can obtain a simpler BSP tree

If a scene is not going to change, and the BSP tree will be used many times, then it may be worth a large amount of preprocessing time to find the best possible BSP tree
When dealing with BSP trees, we need to determine inside or outside many times. What exactly does this mean?

- A facet lies entirely on one side of a plane if all of its vertices lie on that side.
- Vertices are points. The position of the observer is also a point.
- Thus, given a facet and a point, we need to be able to determine on which side of the facet’s plane the point lies.

We assume we know the normal vector of the facet (and that it points toward the “outside”).

- If not, compute the normal using a cross product.
- If you are using vecpos.h, and three non-colinear vertices of the facet are stored in pos variables p1, p2, p3, then you can find the normal as follows.

```cpp
vec n = cross(p2-p1, p3-p1).normalized();
```
To determine on which side of a facet’s plane a point lies:

- Let N be the normal vector of the facet
- Let p be a point in the facet’s plane
 - Maybe p is a vertex of the facet?
- Let z be the point we want to check
- Compute $(z - p) \cdot N$
 - If this is positive, then z is on the outside
 - Negative: inside
 - Zero: on the plane

Using vecpos.h, and continuing from previous slide:

```c
pos z = ...;  // point to check
if (dot(z-p1, n) >= 0.)
  // Outside or on plane
else
  // Inside
```
May need to split facet when constructing BSP tree

Example

Suppose we have the facet shown below.

If all vertices are (say) outside, then no split required

But if A, E, and F are outside (+), and B, C, and D are inside (−), then we must split into two facets.
Where do we split?

* Since the expression \((z – p) \cdot N\) is positive at E and negative at D, it must be zero somewhere on the line segment joining D and E. Call this point S. This is one place where the facet splits.
* Let \(k_1\) be the value of \((z – p) \cdot N\) at D, and let \(k_2\) be the value at E.
* Then \(S = \left(\frac{1}{(k_2 – k_1)}\right) (k_2D – k_1E)\).
* Point T (shown in the diagram) is computed similarly.

Using vecpos.h (continuing from earlier slides):

```c
double k1 = dot(D-p1, n);
double k2 = dot(E-p1, n);
pos S = affinecomb(k2, D, -k1, E);
// Explanation of above line?
```

BSP Trees:
Splitting Polygons [2]

We were given vertices A, B, C, D, E, F in order

We computed S and T

- S lies between D and E
- T lies between A and B

We have A, (split at T), B, C, D, (split at S), E, F

We form two polygons as follows:

- Start through vertex list
- When we get to split, use that vertex, and skip to other split
- Result: A, T, S, E, F
- Do the same with the part we skipped
- Result: B, C, D, S, T
Idea of binary space partition: good general applicability
Variations used in several different structures
 ♦ BSP trees (of course)
 ▇ Split along planes containing facets
 ♦ Quadtrees & octrees (next)
 ▇ Split along pre-defined planes.
 ♦ K-d trees (Lecture 28)
 ▇ Split along planes parallel to coordinate axes, so as to split up the objects nicely.
 ▇ How about a project on K-d trees?
Quadtrees used to partition 2-D space; octrees are for 3-D
 ♦ Two concepts are nearly identical
 ♦ Unfortunate that they are given different names
In general

- **Quadtree**: tree in which each node has at most 4 children
- **Octree**: tree in which each node has at most 8 children
- **Binary tree**: tree in which each node has at most 2 children

In practice, however, we use “quadtree” and “octree” to mean something more specific

- Each node of the tree corresponds to a square (quadtree) or cubical (octree) region
- If a node has children, think of its region being chopped into 4 (quadtree) or 8 (octree) equal subregions
- Child nodes correspond to these smaller subregions of parent’s region
- Subdivide as little or as much as is necessary
- Each internal node has exactly 4 (quadtree) or 8 (octree) children
Quadtrees & Octrees [3]: Example

- Root node of quadtree corresponds to square region in space
 - Generally, this encompasses entire “region of interest”

- If desired, subdivide along lines parallel to the coordinate axes, forming four smaller identically sized square regions
 - Child nodes correspond to these

- Some or all of these children may be subdivided further

- Octrees work in a similar fashion, but in 3-D, with cubical regions subdivided into 8 parts
Quadtrees & Octrees [4]:
What Are They Good For?

- **Handling Observer-Object Interactions**
 - Subdivide the quadtree/octree until each leaf’s region intersects only a small number of objects
 - Each leaf holds a list of pointers to objects that intersect its region
 - Find out which leaf the observer is in. We only need to test for interactions with the objects pointed to by that leaf

- **Inside/Outside Tests for Odd Shapes**
 - The root node represent a square containing the shape
 - If node’s region lies entirely inside or entirely outside shape, do not subdivide it
 - Otherwise, do subdivide (unless a predefined depth limit has been exceeded)
 - Then the quadtree or octree contains information allowing us to check quickly whether a given point is inside the shape

- **Sparse Arrays of Spatially-Organized Data**
 - Store array data in the quadtree or octree
 - Only subdivide if that region of space contains interesting data
 - This is how an octree is used in the BLUIsculpt program
Summary

- Reading for Last Class: §2.4.3, 8.1, Eberly 2e, GL handout
- Reading for Today: Chapter 6, Esp. §6.1, Eberly 2e
- Reading for Next Class: Chapter 7, §8.4, Eberly 2e
- Last Time: Collision Detection Part 1 of 2
 - Static vs. dynamic, testing vs. finding, distance vs. intersection
 - Triangle point containment test
 - Lots of intersections: spheres, capsules, lozenges
 - Method of separating axes
- Today: Adaptive Spatial Partitioning
 - Visible Surface Determination (VSD) revisited
 - Constructive Solid Geometry (CSG) trees
 - Binary Space Partitioning (BSP) trees
 - Quadtrees: adaptive 2-D (planar) subdivision
 - Octrees: adaptive 3-D (spatial) subdivision
- Coming Soon: Volume Graphics & Voxels
Terminology

- **Collision Detection**
 - Static vs. dynamic objects
 - Queries: test-intersection vs. find-intersection
 - Parametric methods: distance-based, intersection-based

- **Bounding Objects**
 - Axis-aligned bounding box
 - Oriented bounding box: can point in arbitrary direction
 - Sphere
 - Capsule
 - Lozenge

- **Constructive Solid Geometry Tree: Regularized Boolean Set Operators**

- **Adaptive Spatial Partitioning: Calculating Intersection, Visibility**
 - Binary Space Partitioning tree – 2-way decision tree/surface
 - Quadtree – 4-way for 2-D
 - Octree – 8-way for 3-D