
Support Vector Machines

Approach:

� Project instances into high dimensional space

� Learn linear separators with maximum margin

� Learning as optimizing bound on expected error

Positives:

� Good empirical results on character recognition,
text classi�cation, ...

� PAC-style theoretical grounding
� Appears to avoid over�tting in high dimensional
spaces

� Global optimization method, no local optima

Negatives:

� Applying trained classi�er can be expensive

1



Linear Separator
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Want a linear separator. Can view this as
constraint satisfaction problem:

~xi � ~w + b � +1 if yi � f(~xi) = +1
~xi � ~w + b � �1 if yi = �1

Equivalently,

yi(~xi � ~w + b)� 1 � 0; (8i)
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We'd like the hyperplane with maximum margin

� size of margin is 2

jj~wjj

So view our problem as a constrained optimization
problem:

Minimize jj~wjj2, subject to

yi(~xi � ~w + b)� 1 � 0; (8i)
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Linear Separator
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�margin determined by just a few examples

{ call these support vectors

{ can de�ne separator in terms of support
vectors

f(~x) sgn(
X

si2support vectors
wi~si � ~x+ b)

� Can bound expected true error of learned
hyperplane h by

E[errorD(h)] � E[number of support vectors]

m
Expectation on left is over training sets of size m� 1. On right, is over all training sets of size m
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Non-Separable Training Sets
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slack

Add a \slack variable" �i � 0 for each hxi; yii.
New optimization problem is

Minimize jj~wjj2 + C(Pi �i)
k, subject to

~xi � ~w + b � +1� � if yi = +1
~xi � ~w + b � �1 + � if yi = �1

C picked by hand

5



NonLinear SVMs

Suppose we have instance space X = <n1, need
nonlinear separator.

! project X into some higher dimensional space
X 0 = <n2 where data will be linearly separable

� let � : X ! X 0 be this projection.

Interestingly,

� Training depends only on dot products of form
�(~xi) � �(~xj)
� So we can train in <n2 with same computational
complexity as in <n1, provided we can �nd a
function K such that K(~xi; ~xj) = �(~xi) � �(~xj)
� Classifying new ~x requires calculating sign of

f(~x) X

si2support vectors
wiyiK(~si; ~x) + b
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NonLinear Support Vector Machines

Example1: X = <2, X 0 = <3

�(~x) =

0
BBBBBB@

x2
1p

2x1x2
x2
2

1
CCCCCCA

Then we can solve optimization problem using

K(~xi; ~xj) = �(~xi) � �(~xj) = (~xi � ~xj)2
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NonLinear Support Vector Machines

Example2: X = <n;X 0 = <1
We can use

K(~xi; ~xj) = e�jj~xi� ~xjjj
2=2�2

... which corresponds to radial basis function
network with Gaussian kernel function!

f(~x) X

si2support vectors
wiyiK(~si; ~x) + b

Note SVM automatically chooses RBF weights wi,
Gaussian centers ~si, number of centers, and
threshold b. Just not � ...
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NonLinear Support Vector Machines

Other kernel functions that have been used:

� Polynomial classi�er of degree p

K(~xi; ~xj) = (~xi � ~xj + 1)p

� Gaussian radial basis function classi�er

K(~xi; ~xj) = e�jj~xi� ~xjjj
2=2�2

� This one doesn't quite have a �

K(~xi; ~xj) = tanh(�~xi � ~xj � �)
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Which � to Choose?

From PAC theory (Vapnik, 1995) we know that
with probability (1� �)

errD � errD+

vuuuut
V C(H)(log(2m=V C(H)) + 1)� log(�=4)

m

� errD is true error of h

� errD is error of h on training set D

�m is number of training examples in D

� V C(H) is VC dimension of hypothesis space H

So let us select � that minimizes this expression
(called Structural Risk Minimization principle)

� trades o� V C(H) and errD(h)

� similar to Min Description Length methods
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What is VC dim of Separators with

Margins?

Consider Gap Tolerant classi�ers that

� Require a minimum margin M

� Classify only examples outside margin and
inside sphere of diameter D

VC dim of Gap Tolerant classi�ers is at most
1 +min(d;D2=M2)

� d is dimension of X 0 = <d
�M is min margin allowed by classi�er

�D is diameter in instance space of classi�er

suggests choosing the �i that minimizes structural
risk, where substitute 1 +min(d;D2=M2) for VC
dim
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Summary: Support Vector Machines

Learn linear separators (e.g., perceptrons)

� Pick separator that maximizes margin

� Use slack parameters �i to accomodate
unseparable data

� Can write separating plane in terms of support
vectors

Learning non-linear functions

� Project instance space X into higher dimension
X 0

� Use kernel functions for e�ciency (to train
directly in X)

� Choose hypothesis (including choice of �) by
minimizing total \risk"
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Further Reading

The idea of maximizing the margin goes back to work by Vapnik published in 1982. Support
Vector Machines were �rst introduced in [Cortes and Vapnik, 1995]. An excellent SVM tutorial is
available online [Burgess 1998]. A new edited collection of articles is available in [Scholkopf et al.,
1998]. SVM code may be downloaded from the site http://www-ai.informatik.uni-
dortmund.de/FORSCHUNG/VERFAHREN/SVM LIGHT/svm light.eng.html

� Burgess, C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, Boston, MA: Kluwer Academic Publishers, to appear.
http://svm.research.bell-labs.com/SVMdoc.html

� Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273 - 297.

� Joachims, T., (1997). Text categorization with support vector machines, Proceedings of the
1997 European Conference on Machine Learning (ECML),
http://www-ai.informatik.uni-
dortmund.de/FORSCHUNG/VERFAHREN/SVM LIGHT/svm light.eng.html.

� Scholkopf, B., Burges, C., & Smola, A. (eds.) (1998). Advances in Kernel Methods - Support
Vector Learning, MIT-Press.

� Vapnik, V. (1995) The nature of statistical learning theory, New York: Springer.
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