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Abstract. In this paper we implement GAs that have one or more parameters that
are adjusted during the run. In particular we use an existing self-adaptive mutation
rate mechanism, propose a new mechanism for self-adaptive crossover rates, and
redesign an existing variable population size model. We compare the simple GA with
GAs featuring only one of the parameter adjusting mechanisms and with a GA that
applies all three mechanisms - and is therefore almost “parameterless”. The
experimental results on a carefully designed test suite indicate the superiority of the
parameterless GA and give a hint on the power of adapting the population size.

Introduction

Traditional genetic algorithms have parameters that must be specified before the
GA is run on a problem. The most important parameters are the strategy or control
parameters: population size (N), mutation rate (pm), and crossover rate (pc). The
optimum setting of these parameters can be different for each problem. Moreover, the
optimal values can be different in different phases of one single run on a given
problem. Setting parameter values correctly is, therefore, a hard task. In general, there
are two major forms of setting parameter values: parameter tuning and parameter
control [EHM99]. Parameter tuning is the usual approach of finding good parameter
values before the run of the GA and then these static values are used during the whole
run. Parameter control is different because it changes initial parameter values during
the run. Parameter control itself has three variants: deterministic, adaptive and self-
adaptive. Deterministic means that parameters are changed according to a rule which
uses no feedback from the GA, usually it is some sort of time-varying scheme. For
adaptive control, feedback does take place and the values are changed in direction or
magnitude depending on this feedback. Self-adaptivity is the idea of evolution of the
parameters of evolution; the values are encoded into the chromosomes and are also
subject to mutation, crossover and selection. The better parameter values will survive
because they produce better offspring. Throughout this paper we maintain this
terminology and use the term self-adjusting if we do not want or cannot specify which
form of parameter control is used.

The main objective of this paper is to investigate the feasibility of eliminating the
three main parameters, N, pm, and pc. That is, we are looking for experimental
evidence on the performance of  a parameterless GA. The race is not won in advance
by any of the GA variants, for we are dealing with a clear trade-off situation. On the
one hand, on-line parameter adjustment causes a learning overhead, that is the GA is



solving a problem and is learning good parameter values at the same time. This might
cause a performance decrease w.r.t. using steady parameters. On the other hand,
adjustable parameters provide the GA with valuable flexibility. If the GA can adjust
its parameters (sub)optimally it might cause increased efficiency. A priori it cannot be
predicted which effect will influence the GA performance more.

Previous research on the mutation rate (pm), crossover rate (pc) and population size
(N), has focused on either adapting/self-adapting one of these parameters or on
adjusting two or all of these parameters in a non self-adaptive fashion (i.e. adaptive or
dynamic parameters). As for crossover there has not been previous research on self-
adapting the crossover rate. The technical research objectives here are threefold.

1. Designing and investigating a new method for self-adapting the crossover rate.
2. Investigating the effect of self-adjusting the parameters pm, pc and N separately; a

self-adaptive pm, a self-adaptive pc and an adaptive N. (Notice that a self-adaptive
population size wouldn’t make much sense.)

3. Investigating the combined use of self-adjusting pm, pc and N within a completely
self-adjusting GA.

Test suite

To gain relevant experimental feedback we have carefully chosen a number of test
functions. For selecting the test function we followed the guidelines after [WMRD95,
BäMi97] and required that the test suite should
1) include a few unimodal functions for comparison of efficiency (convergence

velocity),
2) contain nonlinear, nonseparable problems,
3) contain scalable functions,
4) have a standard form,
5) include a few multimodal functions of different complexity with a large

number of local optima,
6) not have only multimodal functions that have a regular arrangement of local

optima, (because this  might favour GA-operators that exploit the regularity),
7) contain high-dimensional functions, because these are better representatives

of real-world applications.

The following test suite of five functions conforms to the rules listed above: f1 is
the sphere model after De Jong [DeJo75], f2 is the generalized Rosenbrock function
[Rose60,HoBä91], f3 is the generalized Ackley function [Ackl87,BäSc93], f4 is the
generalized Rastrigin function [TöZi89,HoBä91], and f5 is the fully deceptive six-bit
function [Deb97] (this is the only function in the test set that uses 6 bits/variable). In
order to comply to a standard form; they all have dimension n=10 and use 20
bits/variable (except f5).
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Algorithms

The basic traditional GA used for this research is a steady-state GA using Gray
coding, a mutation rate of pm = 1/l, and a crossover rate of pc = 0.90. The population
size is N = 60. The chromosome length will be 220 bits (80 bits for f5), which consists
of 10x20=200 bits (10x6=60 bits for f5) for the ten function variables (dimension
n=10) and at the end 2x10=20 bits for the two self-adaptive parameters pm and pc.
Although the pm and pc are not used by the TGA, they are added and calculated for
two reasons. The first reason is that, compared to the other GA’s, any (dis)advantage
from a different length of the bitstring is ruled out. Second reason is that now, at the
end of a TGA run, one can check if the values of pm and pc are totally random, as they
should be. We use uniform crossover and parents are selected through tournament
selection with tournament size 2. The replacement strategy is delete worst; the two
worst members of a population are deleted to make place for two new members. The
initialization of the population for each function comes from random bits stored in 30
files. These files will be used for each different GA. This guarantees that every GA
and every function starts with the same population and no (dis)advantage is caused by
a different initialization. The GA terminates when the (known) optimum is found or
the maximum number of fitness evaluations is reached. The maximum number of
evaluations is 100.000 for f1,  f3 and f5 and 500.000 for f2 and f4.



Self-adaptive mutation
This mechanism is implemented after Bäck [Bäck92a, Bäck92b] and Fogarty and
Smith [FoSm96]: a self-adaptive mutation rate between 0.001 (< 1/l) and 0.25 is
encoded in extra bits at the tail of every individual. For each member in the starting
population the rate will be completely random within that range. Mutation then takes
place in two steps. First only the bits that encode the mutation rate are mutated and
immediately decoded to establish the new mutation rate. This new mutation rate is
applied to the main bits (those encoding a solution) of the individual. The GA using
this mechanism is called self-adaptive mutation GA (SAMGA).

Self-adaptive crossover
To our knowledge a stand-alone self-adaptive pc on a GA has not been used before.
Previous research was done on adaptive pc e.g. [Davi89] or on self-adapting pc

simultaneously with self-adapting the pm in a trade-off [Juls95]. In our method a self-
adaptive crossover rate between 0 and 1.0 is coded in extra bits at the tail of every
individual (initialized randomly). When a member of the population is selected for
reproduction by the tournament selection, a random number r below 1 is compared
with the member's pc. If r is lower than pc, the member is ready to mate. If both
selected would-be parents are ready to mate two children are created by uniform
crossover, mutated and inserted into the population. If it is not lower, the member will
only be subject to mutation to create one child which undergoes mutation and
survivor selection immediately. If both parents reject mating, the two children are
created by mutation only. If one parent is willing to mate and the other one does not,
then the parent that is not in for mating is mutated to create one offspring, which is
inserted in the population immediately. (Note that in such a case we deviate from the
(N+2) scheme and use (N+1) instead.) The willing parent is on hold and the next
parent selection round only picks one other parent.

Adaptive population size
Following the ideas of Arabas, Michalewicz and Mulawka with GAVaPS [Mich94,
p.70], every new individual is allocated a (remaining) lifetime or life span according
to the individuals fitness by a bi-linear scheme. Each cycle, the remaining lifetime
(RLT) of all the members in the population is decremented by one. However, we
make an exception for the fittest member, whose RLT is left unchanged. If the RLT of
an individual reaches zero it is removed from the population. The bi-linear formula in
GAVaPS is for functions to be maximized. Therefore we adjust this formula for the
functions in this investigation. In this formula MinLT and MaxLT stand for the
allowable minimum and maximum lifetime of an individual. The other variables are
linked with the current state of the search. These variables are fitness(i), AvgFit,
BestFit and WorstFit. They stand for the fitness of individual i, average fitness, best
fitness and worst fitness of the current living population. The individual for which the
remaining lifetime (RLT) is being calculated, is considered to be already inserted into
the population in this scheme and therefore (may) influence AvgFit, WorstFit and
BestFit.
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The values for MinLT and MaxLT are set to 1 and 11 in this study, because initial
runs with different values indicated that MaxLT=11 delivers good performance. (One
could say that choosing a population size N is now shifted to choosing a maximum
lifetime MaxLT.) The function RLT(i) gives a (remaining) lifetime of 1 to 11 to each
new individual i that enters the population. If its fitness(i) is better than the average
fitness, it gets a life span of 7 to 11; if it is worse it gets a life span of 1 to 6. In the
higher subrange the much-better-than-average individuals get higher values than the
somewhat-better-than-average individuals. The same procedure applies for the lower
subrange: the worst individuals get much lower lifetimes than the almost-average
individuals. The initial population consists of 60 individuals.

Note that our GA is different from GAVaPS in that it is a steady-state GA instead
of a generational GA. The evolution process is long, so it is likely that eventually
every individual will die of old age.

Performance measures

With every one of the five different GA’s, 30 runs will be done per test function,
which will make a total of 750 runs. In all GAs the best fitness and the average fitness
of the population is monitored until a run terminates. For the self-adjusting GA’s the
relevant parameters (pm, pc and population size) will also be monitored during each
run. The speed of optimization will be measured by the Average number of
Evaluations on Success (AES), how many evaluations did it take - on average - for
the successful runs to find the optimum.. The Success Rate (SR) shows how many of
the runs were successful in finding the optimum. If the GA is somewhat unsuccessful
(SR < 30), the measurement MBF (Mean Best Fitness) shows how close the GA can
come to the optimum. If the SR=30, then the MBF will be 0, because every run found
the optimum 0. The MBF includes the data of all 30 runs in it, the successful and the
unsuccessful ones.

Experimental results

In this section we present the main results of five algorithm variants. A full
overview of experiments can be found in [vdVaart99]. The simple TGA will serve as
a benchmark for the other variants. Three GAs use one extension to the TGA: the GA
with self-adaptive mutation rate only (SAMGA), the GA with self-adaptive crossover



rate only (SAXGA), and the GA with adaptive population size only (APGA). Finally,
we study the GA featuring all extensions, called SAMXPGA.

Traditional Genetic Algorithm
f1 f2 f3 f4 f5

SR 30 0 30 30 0

AES
st. dev.

14,669
±1,934

- 16,042
±6,502

163,498
±61,614

-

MBF
St. dev.

0 0.281
±0.317

0 0 0.64
±0.103

Avg pm

st.dev.
0.121
±0.076

0.126
±0.061

0.131
±0.065

0.123
±0.054

0.13
±0.048

Avg pc

st.dev.
0.454
±0.223

0.473
±0.25

0.559
±0.259

0.545
±0.222

0.504
±0.18

Table 1. SR, AES, MBF, avg. pm and avg. pc for the TGA at the end of all runs. The self-
adaptive pm and pc are not used by the TGA, but are added to the table to see if they are truly
random.

Note that the interval for pm is [0.001..0.25] and for pc [0..1.0]. If they are really
randomly divided, the average pm and pc should be respectively around 0.1245 and
0.5. Table 1 indicates that they are indeed random and therefore have no influence on,
or are influenced by, the TGA.

Genetic Algorithm with Self-Adaptive Mutation (SAMGA)
f1 f2 f3 f4 f5

SR 30 0 30 14 0

AES
st.dev.

18,345
±2,847

- 17,042
±2,392

378,178
±84,301

-

MBF
st.dev.

0 0.376
±0.463

0 1.758
±2.869

0.688
±0.1

Avg pm

st.dev.
0.0021

±0.0017
0.0029

±0.0021
0.0024

±0.0015
0.002

±0.0014
0.0023

±0.0016
Avg pc

st.dev.
0.471

±0.247
0.47

±0.241
0.467

±0.285
0.458

±0.259
0.492

±0.254

Table 2. SR, AES, MBF, avg. pm and avg. pc for the SAMGA at the end of all runs. The self-
adaptive pc is not used by the SAMGA, but is added to the table to see if it is truly random.



Genetic Algorithm with Self-Adaptive Crossover (SAXGA)
f1 f2 f3 f4 f5

SR 30 0 30 30 0

AES
st.dev.

16,033
±1,878

- 21,486
±14,050

170,820
±75,891

-

MBF
st.dev.

0 0.355
±0.342

0 0 0.581
±0.09

Avg pm

st.dev.
0.1191

±0.0592
0.12

±0.0628
0.1358

±0.0646
0.1319
±0.067

0.1404
±0.0459

Avg pc

st.dev.
0.68

±0.188
0.57

±0.266
0.565
±0.25

0.617
±0.246

0.514
±0.161

Table 3. SR, AES, MBF, avg. pm and avg. pc for the SAXGA at the end of all runs. The self-
adaptive pm is not used by the SAXGA, but is added to the table to see if it is truly random.

Genetic Algorithm with Adaptive Population Size (APGA)
f1 f2 f3 f4 f5

SR 30 0 30 30 0

AES
st.dev.

9,645
±1,240

- 19,919
±14,903

163,494
±58,433

-

MBF
st.dev.

0 0.133
±0.186

0 0 0.587
±0.136

Avg pm
st.dev.

0.1409
±0.0703

0.1291
±0.0777

0.0964
±0.072

0.1412
±0.0704

0.1089
±0.0606

Avg pc
st.dev.

0.558
±0.258

0.586
±0.257

0.432
±0.278

0.496
±0.252

0.485
±0.293

Avg remaining lifetime
st.dev.

6.36
±0.73

5.86
±0.75

6.23
±0.57

6.41
±0.7

5.04
±1.55

Avg population size
st.dev.

14.1
±2.66

13.5
±2.6

12.7
±2.02

12.8
±2.45

7.8
±2.84

Table 4. SR, AES, MBF, avg. pm, avg. pc, avg. RLT and avg. population size for the SAPGA at
the end of all runs. The self-adaptive pm and pc are not used by the SAPGA, but are added to the
table to see if they are truly random.



All-in-one Genetic Algorithm (SAMXPGA)
f1 f2 f3 f4 f5

SR 30 0 30 30 0

AES
st.dev.

16,505
±4,906

- 16,821
±8,869

143,933
±94,496

-

MBF
st.dev.

0 0.199
±0.244

0 0 0.568
±0.11

Avg pm
st.dev.

0.0028
±0.0023

0.0205
±0.0261

0.0038
±0.0057

0.0032
±0.0024

0.024
±0.0403

Avg pc
st.dev.

0.495
±0.297

0.622
±0.27

0.563
±0.213

0.629
±0.286

0.597
±0.291

Avg remaining lifetime
st.dev.

6.13
±0.92

5.75
±1.47

6.32
±0.96

6.17
±0.92

4.8
±1.83

Avg population size
st.dev.

13.4
±5.36

10.8
±4.33

11.4
±3.83

11.6
±5.09

9.2
±5.7

Table 5. SR, AES, MBF, avg. pm, avg. pc, avg. RLT and avg. population size for the
SAMXPGA at the end of all runs

The ranking of the GAs on each function
TGA SAMGA SAXGA APGA SAMXPGA

f1 2 5 3 1 4

f2 3 5 4 1 2

f3 1 2½ 5 4 2½

f4 2½ 5 4 2½ 1

f5 4 5 2½ 2½ 1

Total 12½ 22½ 18½ 11 10½

End Ranking 3 5 4 2 1

Table 6. Global comparison of GA versions on the test suite

In order to give a clear overview on the performance of all GA variants we rank the
GAs for each function. In particular, we award the fastest GA, or the GA closest to
the minimum, one point, the second fastest GA two points, and so on, so the worst
performing GA for a given function gets five points. If for a particular function two
GA’ s finish real close to each other, we award them equally: add the points for both
those rankings and divide that by two. After calculating these points for each function



and each GA variant we add the points for all the functions to form a total for each
GA. The GA with the least points has the best overall performance.

Conclusions

The performance of the self-adapting parameters pm and pc is disappointing when
they are on their own (in SAMGA and SAXGA). The most likely reason is that time
spent on searching good parameter values is time taken away from finding the
optimum. Another important reason for the SAMGA is that it does not use the 1/5
success rule as Fogarty and Smith did [FoSm96]. They generate five individuals with
mutation and choose only to insert the best one into the population. This gives extra
survival pressure and that seems to give better values for pm at a faster rate. The
SAXGA is not as bad as the SAMGA. It does perform quite well on the relatively
easy functions f1 and f5, but on the other three functions it finishes one but last or last.
Adapting the population size in the SAPGA, on the other hand, is very effective. The
maximum lifetime of 11 sets high pressure on survival and this keeps the population
size small. This clearly benefits the search, for the SAPGA is the second best GA in
this research and not far from being the best.

The overall competition ends in a close finish with the SAMXPGA as number one
and the SAPGA right on its heels. It did surprise us using adaptive population sizes
proved to be the key feature to improve the basic TGA. Alone, or in combination with
the self-adaptive variation operators, the mechanism to adjust the population size
during a run causes a consequent performance improvement w.r.t. the benchmark GA.

The main objective of this paper has been the study of a GA that has no parameters
– or at least is freed from the three main parameters pm, pc and N. Our experiments
showed that such a GA outperforms the four other variants we examined in this study.
Nevertheless, it could be hypothesized that the main source of this victory is the
adaptation of the population size (N). The self-adaptive pm and pc do contribute to its
good performance (compare APGA with SAMXPGA) but we also conjecture that it
works the other way around too. Namely, that the high selective pressure in the
relatively small adaptive populations helps to get better pm and pc values.

These outcomes give a very strong indication that, in contrary to past and present
practice (where quite some effort is devoted to tuning or on-line controlling of the
application rates of variance operators), studying control mechanisms for variable
population sizes should be paid more attention.

Our future research is directed to verifying these outcomes on a larger test suite,
including real-world problems and a detailed analysis of varying population sizes
(comparing deterministic time-varying schemes with adaptive control).
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