CIS 798 (Topics in Computer Science)

Topics in Intelligent Systems and Machine Learning
Fall, 1999

Homework Assignment 2

Wednesday, September 22, 1999

Due: Friday, October 22, 1999 (by 11pm)

Machine Problems

In this programming assignment, you will implement three simple learning algorithms (ID3, Perceptron/Winnow, and simple Bayes) that we have covered in class, and test them on data sets.

You may use Java, C++, or any other high-level programming language with which you are familiar, provided it has been approved by the instructor. Java and C++ are strongly preferred. You may also use MLC++ or other published codes to check your program outputs (please document this usage). You may not, however, include any sources other than standard libraries (C standard library, standard template library, MFC, and basic Java classes) in the program you hand in.

Your programs will be evaluated based upon functionality, correctness (performance on general test cases and some boundary cases), readability, and documentation (which may be inline or separate as you choose).

You have one month for this assignment. It is important that you start early! Each part should be possible for you to complete within a week. (You should consider it a milestone goal to finish one of these parts by each Friday, starting on October 1.)

General Guidelines
Feel free to talk to other members of the class in doing the homework. I am more concerned that you learn how to solve the problem than that you demonstrate that you solved it entirely on your own. You should, however, produce your source code yourself. For programming assignments, in addition to the results (see below) you should include brief documentation (one paragraph per part) describing what you did, what difficulties you encountered, and what conclusions you reached.

Feel free to send e-mail, to come to ask questions during office hours, and especially to post your questions on the class web board, http://ringil.cis.ksu.edu/Courses/Fall-1999/CIS798/Board/.

Obtaining the test data

Test data for each machine problem will be made available in parts on the class web page (under http://ringil.cis.ksu.edu/Courses/Fall-1999/CIS798/Homework/). The names of the files you should download (where available) will be: part-i-train.data, part-i-test.data, part-i.names (a common names, or schema, file containing type declarations for the data), part-i-info.txt (instructions on the test format) part-i-train.out, and part-i-test.out (examples of correct output).

Testing your results

Your should download the sample training data and documentation after each part is complete (one per week). I will test your programs using the sample data and using a separate validation set (or other tests). Be sure that your program behaves correctly on files of the specified format (consult part-i-info.txt).

Part 1 (30 points): Decision Tree Learning – Implementing ID3
You should finish this part by Friday, October 1, 1999.

In Parts 1 and 2, you will write programs to do the following:

1. Pre-process the data.

2. Grow a decision tree using the information gain splitting heuristic.

3. Display a decision tree.

4. Evaluate a decision tree on a data set.

Each node in the decision tree corresponds to an attribute. You may choose the nodes to be binary attributes of the form attribute = value (for example, we might check whether attribute 3, say, attribute X(3,1) from above, has the value `d’), or you may allow them to accept more values. Other than that, there are a few decisions you need to make in your implementation. Make sure you explain in your short report what your algorithm does.

Before you run your decision tree learner on the data, test it on a small set of examples for which you can construct the tree yourself (e.g., the data from Exercise 3.2, Mitchell) and make sure you get what you want. Once your code is working, run it on Train and test it on Test.

You may print decision trees in ASCII text format. For example:

attribute 0 == x

attribute 1 == y

attribute 2 == z

class = +

attribute 2 == k

class = -

attribute 1 != y

class = +

attribute 0 != x

attribute 1 == r:

class = +

attribute 1 != r:

class = -

(Use the explicit attributes here, so that the output will be comprehensible.) Your routine for testing the accuracy of a decision tree should print the results in the following form.

Test
Cases
True
False

+ 100
70
5

-
50
45
30
This says that:

· 70 test examples were predicted to belong to class + and actually did belong to class + (true positive).

· 5 examples were predicted to be in class + but were actually in class - (false positive).

· 45 test examples were predicted to belong to class - and actually did belong to class - (true negatives).

· 30 examples were predicted to be in class - but were actually in class + (false negatives).

Finally, report the error rate. The error rate is the sum of the errors (30 + 5) divided by the total number of examples (150); that is, 23%.

Part 2 (30 points): Decision Tree Learning – The Badge Game

You should finish this part by Friday, October 8, 1999.

We will use a data set that is based on the Badge Game (http://l2r.cs.uiuc.edu/~danr/Teaching/CS346-99/game.html).

The data is given as a set of examples, each of the form (label, string1, string2), where the two strings form the example, and the label can be either + or -. The data already comes in two sets, Train and Test, consisting of 80% (235 examples) and 20% (59 examples) of the data, respectively. There are 158 positive examples in total (126 in Train) and 136 negative examples in total (109 in Train).

In this part of your assignment, you must pre-process the data and extract features (attributes) from it. Use 20 attributes, representing the characters in various positions in the two strings. For example, the attribute X(i,j) will stand for the ith character in the jth string (i = 1,2,...10; j = 1,2). The data has been cleaned so that the strings contain only letters, and there are only two strings in each example. Do not distinguish between lower-case and upper case letters. In this way, every variable may have one of 26 different values.

Note: You are required to begin with this set of attributes as a baseline. However, if you wish to use different (constructed) attributes, please do. If you choose to do so, describe the set of attributes you use, and compare the results you get with the basic set with those you get with the new set(s) of attribute.

When running your code, try (at least) the following two options:

1. Limit the depth of the tree. For example, do not allow the tree to be deeper than 3, 5, or 7 nodes.

2. Construct a learning curve. Construct a series of subsets of part-1-train, containing 40, 80, 160, and 235 examples. For each of these subsamples, construct a decision tree, and test the accuracy of the tree on part-1-test. You may plot this curve using Microsoft Excel, GNUplot, or any other plotting software. No hand-drawn plots, please.
Report the results from these experiments along with your result on the full training and test data.

Part 3 (35 points): Perceptrons and Winnow

You should finish this part by Friday, October 15, 1999.

In this machine problem, you will implement two very simple and important learning algorithms and experiment with them by comparing them on a synthetic data set. The algorithms are online, one-pass versions of Perceptron and Winnow, as described in Chapter 4 of Mitchell and Lecture 6.

You will run 3 experiments. In each, you will learn a different target function (generated using the same program) using each algorithm and present the corresponding learning curves.

Target function and data

The instance space is {0, 1}500 (that is, there are 500 binary (boolean-valued) attributes, or features, in the domain. The 3 target concepts will all be k-of-m functions, each time with a different k.

Definition: Let f: {0, 1}n ({0, 1} be an k-of-m function. f is defined as follows: Let x ({0, 1}n. Let S be a fixed subset of attributes (out of the n possible) and let |S| = m. f(x) = 1 if and only if k attributes out of the m fixed attributes have the value 1.

Note that if m = n, then we have the well-known k-of-n concept (called m-of-n in class and in most of the literature). This is the case where all the attributes are relevant. We are going experiment with the case where only the first half (m = 250) of the attributes are relevant. This function can be represented using the hypothesis language provided by Perceptron and Winnow.

You will run 3 experiments, with different values of k: k = 10, k = 50, and k = 100.

Data generation

First, you will generate the data for the experiments yourself. For each function f10, f50, f100, generate 1100 data points in the following way:

· For each value of k, generate 1000 training examples and 100 test examples. You should then have 3 sets of examples: D10, D50, and D100.

· For each example, randomly generate 100 attributes (bits) and copy them 4 more times to get 500.

· For each k, generate the data under a different probability distribution. You can do this easily by normalizing the result of your random number generator (e.g., rand() in C++) and changing the threshold for setting each xi to 1. We do this so that you will have a good distribution of positive and negative examples.

· For D10, P(xi = 1) = 0.03

· For D50, P(xi = 1) = 0.2

· For D100, P(xi = 1) = 0.4

· To label the examples in Dk according to fk, test the first half of the attributes. For instance, each example in D10 is labeled positive if and only if 10 or more of the first 250 attributes have value 1.

Implementation

This should be the easy part! The data generation may actually be more complicated.

The variants of Perceptron and Winnow that you are implementing are especially simple: use online updates (after each example) and train only one time per example. Note that Perceptron and Winnow are essentially the same algorithm, with a slightly different update rule and constants (e.g., start with a weight vector of (1, 1, …, 1) for Winnow as documented in Lecture 6.

Experiments

For each of the 3 target functions, train the 2 algorithms on the first 50 to 1000 examples in increments of 50 (i.e., 50, 100, 150, …, 950, 1000), and, in each case, test on the 100 test examples you generated. The easiest way to do this is to load the data set into memory and write an outer loop that calls each algorithm on the first m training examples.

You are encouraged to experiment with parameters to find the most effective ones, but be consistent (within and across data sets) when collecting the final results.

What to submit

1. A 1-2 paragraph description of what you did: design decisions in the implementations of the algorithms, parameters used, etc.

2. 3 graphs of the performance (total number of mistakes) as a function of the number of training examples of each of the algorithms. For each k, present a separate graph with 2 curves, one for each algorithm (Perceptron and Winnow). You may plot these 3 curves using Microsoft Excel, GNUplot, or any other plotting software. No hand-drawn plots, please.
3. A brief (2-4 sentence) description and analysis of the final hypothesis of each algorithm.

4. A brief (1 paragraph) discussion of the differences you see in the performance of the algorithms across target functions. Try to explain these differences.

5. Your source code.

Part 4 (30 points): Simple (Naïve) Bayes

You should finish this part by Friday, October 22, 1999.

In this machine problem, you will use simple Bayes (aka naïve Bayes) to learn a distribution for a real-world problem. You will first implement the learning algorithm for simple Bayes, then conduct an experiment with natural language data, and finally, study its potential as a classifier and as a tool for probability estimation.

You will use the naïve Bayes algorithm to solve a classification problem, then conduct your experiments compare two different techniques of probability estimation. One is based on the naïve Bayes assumption, and the second will be estimated directly from the data (or the probability distribution definition).

Real-world data: context sensitive spelling correction
This data set is provided courtesy of Professor Dan Roth at the University of Illinois at Urbana-Champaign. You will download the training and test examples from the class home page.

This is a collection of examples generated from sentences containing either the word “except” or “accept” in the Wall Street Journal (WSJ). You can see the raw sentences and the examples generated from them on the course web site (in the Homework 2 archive). The sentences were transformed to attribute vector representations (the attributes are small conjunctions of the words and the part of speech information). Aggressive statistical pruning of attributes (preliminary attribute subset selection, or relevance determination) was done to yield only 78 attributes. In each example, we list only the indices of the active attributes.
Experiments
For this data set, we will investigate 2 different results and the correlation between them.

1. Prediction of naïve Bayes. In order to complete this section you must learn x1 as a function of the other attributes. After the learning phase (using the 1000 training examples), you need to find the performance of your naïve Bayes classifier on the test data. Train your classifier on the training set, and apply it to the test set to determine the number (and percentage) of examples it predicts correctly.

2. Accuracy of density estimation. Here, we compare 2 ways of estimating the empirical density function. You will estimate the conditional probability of the label x1 given values of any two other attributes. That is, you will find the probability that any example is positive (labeled +) as a function of only 2 attributes at a time. This will be done in two ways: one that uses the naïve Bayes assumption, and one that does not. The density estimation will be done using only the training data.

Let S be the set of all possible combinations of 2 attributes in the example, i.e.,

S = x2 x3, x2 x4, …, x2 x91, x3 x4, …, x90 x91
a) (xi xj (S, estimate the true empirical probability:

P[i][j] = P(x1 = 1 | xi = 1 (xj = 1)

b) Next, estimate the empirical probability, assuming the naïve Bayes condition. That is, evaluate:

[image: image1.wmf][

]

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

1

1

1

1

1

1

1

1

1

1

|

1

1

1

1

1

1

1

1

1

1

x

x

P

x

P

x

|

x

P

x

|

x

P

x

x

P

x

P

x

x

x

P

x

x

|

x

P

j

i

NB

j

i

1

j

i

j

i

j

i

j

i

=

Ù

=

=

×

=

=

×

=

=

=

=

Ù

=

=

×

=

=

Ù

=

=

=

Ù

=

=

=

c) This gives you two probability distributions. You can then compute the distance between them:

[image: image2.wmf](

)

[

]

[

]

[

]

[

]

å

-

=

j

i

x

x

j

i

NB

j

i

P

S

B

P,

D

,

|

|

1

What to submit

1. There are 4 measurements to submit:

a) The accuracy of the naïve Bayes predictor for the data set (training, test) (report both the number of correct predictions and the percentage.

b) For each data set, report the value you get for D(P,B).

2. A brief (2 paragraph) discussion of the results.

3. Your source code.

Extra credit (5 points each)

a) Mitchell, Problem 5.3

b) Russell and Norvig, Problem 15.2

_1000928666.unknown

_1000928918.unknown

