A/A*, Beam Search, and Iterative Improvement

Wednesday, 01 September 2004

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org
http://www.cis.ksu.edu/~bhsu

Reading for Next Week:
Handouts #1-2 (Nilsson, Ginsberg) – at Fiedler Hall Copy Center
Chapter 6, Russell and Norvig
• Today’s Reading
 – Sections 4.3 – 4.5, Russell and Norvig
 – Recommended references: Chapter 4, Ginsberg; Chapter 3, Winston
• Reading for Next Week: Chapter 6, Russell and Norvig 2e
• More Heuristic Search
 – Best-First Search: A/A* concluded
 – Iterative improvement
 • Hill-climbing
 • Simulated annealing (SA)
 – Search as function maximization
 • Problems: ridge; foothill; plateau, jump discontinuity
 • Solutions: macro operators; global optimization (genetic algorithms / SA)
• Next Lecture: AI Applications 1 of 3
• Next Week: Adversarial Search (e.g., Game Tree Search)
 – Competitive problems
 – Minimax algorithm
Informed (Heuristic) Search: Overview

- Previously: Uninformed (Blind) Search
 - No heuristics: only \(g(n) \) used
 - Breadth-first search (BFS) and variants: uniform-cost, bidirectional
 - Depth-first search (DFS) and variants: depth-limited, iterative deepening

- Heuristic Search
 - Based on \(h(n) \) – estimated cost of path to goal (“remaining path cost”)
 - \(h \) – heuristic function
 - \(g \): node → R; \(h \): node → R; \(f \): node → R
 - Using \(h \)
 - \(h \) only: greedy (aka myopic) informed search
 - \(f = g + h \): (some) hill-climbing, A/A*

- Branch and Bound Search
 - Originates from operations research (OR)
 - Special case of heuristic search: treat as \(h(n) = 0 \), sort candidates by \(g(n) \)
Best-First Search [1]: Characterization of Algorithm Family

• Evaluation Function
 – Recall: General-Search (Figure 3.9, 3.10 R&N)
 – Applying knowledge
 • In problem representation (state space specification)
 • At Insert(), aka Queueing-Fn() – determines node to expand next
 – Knowledge representation (KR): expressing knowledge symbolically/numerically
 • Objective; initial state, state space (operators, successor function), goal test
 • $h(n)$ – part of (heuristic) evaluation function

• Best-First: Family of Algorithms
 – Justification: using only g doesn’t direct search toward goal
 – Nodes ordered so that node with best evaluation function (e.g., h) expanded first
 – Best-first: any algorithm with this property (NB: not just using h alone)

• Note on “Best”
 – Refers to “apparent best node based on eval function applied to current frontier”
 – Discussion: when is best-first not really best?
Best-First Search [2]: Implementation

• **function** `Best-First-Search (problem, Eval-Fn) returns solution sequence`
 - **inputs:** `problem`, specification of problem (structure or class)
 `Eval-Fn`, an evaluation function
 - `Queueing-Fn ← function that orders nodes by Eval-Fn`
 • Compare: `Sort` with comparator function `<`
 • Functional abstraction
 - **return** `General-Search (problem, Queueing-Fn)`

• **Implementation**
 - Recall: priority queue specification
 • `Eval-Fn`: `node → R`
 • `Queueing-Fn ← Sort-By`: `node list → node list`
 - Rest of design follows `General-Search`

• **Issues**
 - General family of greedy (aka myopic, i.e., nearsighted) algorithms
 - **Discussion:** What guarantees do we want on `h(n)`? What preferences?
Heuristic Search [1]:
Terminology

- **Heuristic Function**
 - Definition: $h(n) =$ estimated cost of *cheapest* path from state at node n to a goal state
 - Requirements for h
 - In general, any *magnitude* (ordered measure, admits comparison)
 - $h(n) = 0$ *iff* n is goal
 - For A/A*, iterative improvement: want
 - h to have same type as g
 - Return type to *admit addition*
 - **Problem-specific** (domain-specific)

- **Typical Heuristics**
 - Graph search in Euclidean space: $h_{SLD}(n) =$ straight-line distance to goal
 - **Discussion (important): Why is this good?**
Heuristic Search [2]: Background

• Origins of Term
 – *Heuriskein* – to find (to discover)
 – *Heureka*
 • “I have found it”
 • Legend imputes exclamation to Archimedes (bathtub flotation / displacement)

• Usage of Term
 – Mathematical logic in problem solving
 • Polyà [1957]
 • Study of methods for discovering and inventing problem-solving techniques
 • Mathematical proof derivation techniques
 – Psychology: “rules of thumb” used by humans in problem-solving
 – Pervasive through history of AI
 • e.g., Stanford Heuristic Programming Project
 • One origin of rule-based (expert) systems

• General Concept of Heuristic (A Modern View)
 – Any standard (symbolic rule or quantitative measure) used to *reduce search*
 – “As opposed to exhaustive blind search”
 – Compare (later): *inductive bias* in machine learning
Greedy Search [1]: A Best-First Algorithm

- **function** Greedy-Search (problem) **returns** solution or failure
 - // recall: solution Option
 - **return** Best-First-Search (problem, h)

- **Example of Straight-Line Distance (SLD) Heuristic: Figure 4.2 R&N**
 - Can only calculate if city locations (coordinates) are known
 - **Discussion:** Why is h_{SLD} useful?
 - **Underestimate**
 - **Close estimate**

- **Example: Figure 4.3 R&N**
 - Is solution optimal?
 - Why or why not?
Greedy Search [2]:
Properties

• Similar to DFS
 – Prefers single path to goal
 – Backtracks

• Same Drawbacks as DFS?
 – Not optimal
 • First solution
 • Not necessarily best
 • Discussion: How is this problem mitigated by quality of h?
 – Not complete: doesn’t consider cumulative cost “so-far” (g)

• Worst-Case Time Complexity: $O(b^m)$ – Why?
• Worst-Case Space Complexity: $O(b^m)$ – Why?
Greedy Search [4]: More Properties

- Good Heuristic Functions Reduce Practical Space and Time Complexity
 - “Your mileage may vary”: actual reduction
 - Domain-specific
 - Depends on quality of h (what quality h can we achieve?)
 - “You get what you pay for”: computational costs or knowledge required

- Discussions and Questions to Think About
 - How much is search reduced using straight-line distance heuristic?
 - When do we prefer analytical vs. search-based solutions?
 - What is the complexity of an exact solution?
 - Can “meta-heuristics” be derived that meet our desiderata?
 - Underestimate
 - Close estimate
 - When is it feasible to develop parametric heuristics automatically?
 - Finding underestimates
 - Discovering close estimates
Algorithm A/A* [1]: Methodology

- **Idea:** Combine Evaluation Functions g and h
 - Get “best of both worlds”
 - **Discussion:** Why is it important to take both components into account?

- **function** A-$Search\ (problem)$ **returns** solution or failure
 - // recall: solution Option
 - return $Best$-$First$-$Search\ (problem, g + h)$

- **Requirement:** Monotone Restriction on f
 - Recall: monotonicity of h
 - Requirement for completeness of uniform-cost search
 - Generalize to $f = g + h$
 - *aka triangle inequality*

- **Requirement for A = A*:** Admissibility of h
 - h must be an underestimate of the *true* optimal cost ($\forall n . h(n) \leq h^*(n)$)
Algorithm A/A* [2]: Properties

- **Completeness (p. 100 R&N)**
 - Expand lowest-cost node on fringe
 - Requires *Insert* function to insert into increasing order

- **Optimality (p. 99-101 R&N)**

- **Optimal Efficiency (p. 97-99 R&N)**
 - For any given heuristic function
 - No other optimal algorithm is guaranteed to expand fewer nodes
 - Proof sketch: by contradiction (on what partial correctness condition?)

- **Worst-Case Time Complexity (p. 100-101 R&N)**
 - Still exponential in solution length
 - Practical consideration: *optimally efficient* for any given heuristic function
Algorithm A/A* [3]:
Optimality/Completeness and Performance

- **Admissibility**: Requirement for A* Search to Find Min-Cost Solution

- **Related Property**: **Monotone Restriction** on Heuristics
 - For all nodes \(m, n \) such that \(m \) is a descendant of \(n \): \(h(m) \geq h(n) - c(n, m) \)
 - Change in \(h \) is less than true cost
 - Intuitive idea: “No node looks artificially distant from a goal”
 - Discussion questions
 - **Admissibility** \(\Rightarrow\) **monotonicity**?
 Monotonicity \(\Rightarrow\) **admissibility**?
 - Always realistic, i.e., can always be expected in real-world situations?
 - What happens if monotone restriction is violated? (Can we fix it?)

- **Optimality** and **Completeness**
 - **Necessarily and sufficient condition (NASC)**: admissibility of \(h \)
 - Proof: p. 99-100 R&N (contradiction from inequalities)

- **Behavior of A***: **Optimal Efficiency**

- **Empirical Performance**
 - Depends very much on how tight \(h \) is
 - **How weak is admissibility as a practical requirement?**
Problems with Best-First Searches

• **Idea: Optimization-Based Problem Solving as Function Maximization**
 – Visualize function space: criterion (z axis) versus solutions (x-y plane)
 – **Objective**: maximize criterion subject to solutions, degrees of freedom

• **Foothills aka Local Optima**
 – aka relative minima (of error), relative maxima (of criterion)
 – Qualitative description
 • All applicable operators produce suboptimal results (i.e., neighbors)
 • *However, solution is not optimal!*
 – **Discussion**: *Why does this happen in optimization?*

• **Lack of Gradient aka Plateaux**
 – Qualitative description: all neighbors indistinguishable by evaluation function \(f \)
 – Related problem: jump discontinuities in function space
 – **Discussion**: *When does this happen in heuristic problem solving?*

• **Single-Step Traps aka Ridges**
 – Qualitative description: unable to move along steepest gradient
 – **Discussion**: *How might this problem be overcome?*
Heuristic Functions

• **Examples**
 – Euclidean distance
 – Combining heuristics
 • Evaluation *vector* → evaluation *matrix*
 • Combining *functions*: minimization, more sophisticated combinations

• **Performance**
 – Theory
 • Admissible h ⇒ existence of monotonic h *(pathmax heuristic)*
 • Admissibility ⇒ optimal with algorithm A (i.e., A^*)
 • A^* is optimally efficient for any heuristic
 – Practice: admissible heuristic could still be bad!

• **Developing Heuristics Automatically: “Solve the Right Problem”**
 – Relaxation methods
 • Solve an easier problem
 • Dynamic programming in graphs: known shortest-paths to “nearby” states
 – Feature extraction
Iterative Improvement Framework

- **Intuitive Idea**
 - “Single-point search frontier”
 - Expand one node at a time
 - Place children at head of queue
 - *Sort only this sublist, by f*
 - **Result** – direct convergence in direction of steepest:
 - Ascent (in criterion)
 - Descent (in error)
 - Common property: proceed toward goal *from search locus (or loci)*

- **Variations**
 - **Local** (steepest ascent hill-climbing) versus **global** (simulated annealing)
 - **Deterministic versu**s **Monte-Carlo**
 - **Single-point versus multi-point**
 - Maintain frontier
 - Systematic search (cf. OPEN / CLOSED lists): **parallel simulated annealing**
 - Search with recombination: **genetic algorithm**
Preview: Hill-Climbing (Gradient Descent)

- **function** Hill-Climbing (problem) returns solution state
 - **inputs**: problem: specification of problem (structure or class)
 - static: current, next: search nodes
 - current ← Make-Node (problem.Initial-State)
 - loop do
 - next ← a highest-valued successor of current
 - if next.value() < current.value() then return current
 - current ← next // make transition
 - end

- **Steepest Ascent Hill-Climbing**
 - aka gradient ascent (descent)
 - Analogy: finding “tangent plane to objective surface”
 - Implementations
 - Finding derivative of (differentiable) \(f \) with respect to parameters
 - Example: error backpropagation in artificial neural networks (later)

- **Discussion**: Difference Between Hill-Climbing, Best-First?

CIS 730: Introduction to Artificial Intelligence
Search-Based Problem Solving: Quick Review

- **function** `General-Search (problem, strategy) returns a solution or failure`
 - Queue: represents search frontier (see: Nilsson – OPEN / CLOSED lists)
 - Variants: based on “add resulting nodes to search tree”
- **Previous Topics**
 - Formulating *problem*
 - Uninformed search
 - No heuristics: only $g(n)$, if any cost function used
 - Variants: BFS (uniform-cost, bidirectional), DFS (depth-limited, ID-DFS)
 - Heuristic search
 - Based on h – (heuristic) function, returns estimate of min cost to goal
 - h only: greedy (*aka* myopic) informed search
 - A/A^*: $f(n) = g(n) + h(n)$ – frontier based on estimated + accumulated cost
- **Today: More Heuristic Search Algorithms**
 - A^* extensions: iterative deepening (IDA*) and simplified memory-bounded (SMA*)
 - Iterative improvement: hill-climbing, MCMC (simulated annealing)
 - Problems and solutions (macros and global optimization)
Properties of Algorithm A/A*:
Review

- Admissibility: Requirement for A* Search to Find Min-Cost Solution
- Related Property: **Monotone Restriction on Heuristics**
 - For all nodes \(m, n \) such that \(m \) is a descendant of \(n \): \(h(m) \geq h(n) - c(n, m) \)
 - Discussion questions
 - **Admissibility** ⇒ monotonicity? Monotonicity ⇒ admissibility?
 - What happens if monotone restriction is violated? (Can we fix it?)
- Optimality Proof for Admissible Heuristics
 - **Theorem**: *If \(\forall n . h(n) \leq h^*(n) \), A* will never return a suboptimal goal node.*
 - **Proof**
 - Suppose \(A^* \) returns \(x \) such that \(\exists s . g(s) < g(x) \)
 - Let path from root to \(s \) be \(< n_0, n_1, ..., n_k > \) where \(n_k = s \)
 - Suppose \(A^* \) expands a subpath \(< n_0, n_1, ..., n_j > \) of this path
 - **Lemma**: by induction on \(i \), \(s = n_k \) is expanded as well
 - **Base case**: \(n_0 \) (root) always expanded
 - **Induction step**: \(h(n_{j+1}) \leq h^*(n_{j+1}) \), so \(f(n_{j+1}) \leq f(x) \), Q.E.D.
 - **Contradiction**: if \(s \) were expanded, \(A^* \) would have selected \(s \), not \(x \)
A/A*: Extensions (IDA*, SMA*)

- **Memory-Bounded Search**
 - Rationale
 - Some problems intrinsically difficult (intractable, exponentially complex)
 - Fig. 3.12, p. 75 R&N (compare Garey and Johnson, Baase, Sedgewick)
 - “Something’s got to give” – size, time or memory? (“Usually it’s memory”)

- **Iterative Deepening A** – Pearl, Rorf (Fig. 4.10, p. 107 R&N)
 - Idea: use iterative deepening DFS with sort on f – expands node iff A* does
 - Limit on expansion: f-cost
 - Space complexity: linear in depth of goal node
 - Caveat: could take $O(n^2)$ time – e.g., TSP ($n = 10^6$ could still be a problem)
 - Possible fix
 - Increase f cost limit by ϵ on each iteration
 - **Approximation error bound**: no worse than ϵ-bad (ϵ-admissible)

- **Simplified Memory-Bounded A** – Chakrabarti, Russell (Fig. 4.12 p. 107 R&N)
 - Idea: make space on queue as needed (compare: virtual memory)
 - Selective forgetting: drop nodes (select victims) with highest f
Iterative Improvement: Framework

• Intuitive Idea
 – “Single-point search frontier”
 • Expand one node at a time
 • Place children at head of queue
 • Sort only this sublist, by \(f \)
 – Result – direct convergence in direction of steepest:
 • Ascent (in criterion)
 • Descent (in error)
 – Common property: proceed toward goal from search locus (or loci)

• Variations
 – Local (steepest ascent hill-climbing) versus global (simulated annealing)
 – Deterministic versus Monte-Carlo
 – Single-point versus multi-point
 • Maintain frontier
 • Systematic search (cf. OPEN / CLOSED lists): parallel simulated annealing
 • Search with recombination: genetic algorithm
Hill-Climbing [1]: An Iterative Improvement Algorithm

- **function** *Hill-Climbing (problem) returns* solution state
 - **inputs:** *problem*: specification of problem (structure or class)
 - **static:** *current, next*: search nodes
 - *current ← Make-Node (problem.Initial-State)*
 - **loop do**
 - *next ← a highest-valued successor of current*
 - if *next.value() < current.value()* then return *current*
 - *current ← next* // make transition
 - end
- **Steepest Ascent Hill-Climbing**
 - *aka gradient ascent* (descent)
 - Analogy: finding “tangent plane to objective surface”
 - Implementations
 - Finding derivative of (differentiable) f with respect to parameters
 - Example: error backpropagation in artificial neural networks (later)
- **Discussion:** Difference Between Hill-Climbing, Best-First?
Hill-Climbing [2]:
A Restriction of Best-First Search

- **Discussion**: How is Hill-Climbing a Restriction of Best-First?
- **Answer**: Dropped Condition
 - **Best first**: sort by h or f over *current frontier*
 - Compare: insert each element of expanded node into queue, in order
 - Result: greedy search (h) or A/A* (f)
 - **Hill climbing**: sort by h or f within *child list of current node*
 - Compare: local bucket sort
 - **Discussion (important)**: Does it matter whether we include g?

- **Impact of Modification on Algorithm**
 - Search time complexity decreases
 - Comparison with A/A* (Best-First using f)
 - *Still optimal?* No
 - *Still complete?* Yes
 - Variations on hill-climbing (later): momentum, random restarts
Hill-Climbing [3]: Local Optima (Foothill Problem)

- **Local Optima** *aka* Local Trap States
- **Problem Definition**
 - Point reached by hill-climbing may be maximal but not maximum
 - **Maximal**
 - **Definition**: not dominated by any neighboring point *(with respect to criterion measure)*
 - In this partial ordering, maxima are incomparable
 - **Maximum**
 - **Definition**: dominates all neighboring points *(wrt criterion measure)*
 - Different partial ordering imposed: “z value”
- **Ramifications**
 - Steepest ascent hill-climbing will become trapped *(why?)*
 - Need some way to break out of trap state
 - Accept transition (i.e., search move) to dominated neighbor
 - Start over: random restarts
Hill-Climbing [4]:
Lack of Gradient (Plateau Problem)

- **Zero Gradient Neighborhoods** *aka* Plateaux
- **Problem Definition**
 - Function space may contain points whose neighbors are *indistinguishable* *(wrt* criterion measure)*
 - Effect: “flat” search landscape
 - **Discussion**
 - *When does this happen in practice?*
 - *Specifically, for what kind of heuristics might this happen?*
- **Ramifications**
 - Steepest ascent hill-climbing will become trapped *(why?)*
 - Need some way to break out of zero gradient
 - Accept transition (i.e., search move) to random neighbor
 - Random restarts
 - *Take bigger steps* *(later, in planning)*
Hill-Climbing [5]:
Single-Step Traps (Ridge Problem)

- **Single-Step Traps** *aka* **Ridges**

- **Problem Definition**
 - Function space may contain points such that single move in any “direction” leads to suboptimal neighbor
 - **Effect**
 - There exists steepest gradient to goal
 - None of allowed steps moves along that gradient
 - Thin “knife edge” in search landscape, hard to navigate
 - **Discussion (important):** *When does this occur in practice?*
 - *NB:* ridges can lead to local optima, too

- **Ramifications**
 - Steepest ascent hill-climbing will become trapped (*why?*)
 - Need some way to break out of ridge-walking
 - **Formulate** composite transition (multi-dimension step) – *how?*
 - **Accept** multi-step transition (at least one to worse state) – *how?*
 - Random restarts
Ridge Problem Solution: Multi-Step Trajectories (Macros)

- Intuitive Idea: Take More than One Step in Moving along Ridge
- Analogy: Tacking in Sailing
 - Need to move against wind direction
 - Have to compose move from multiple small steps
 - Combined move: in (or more toward) direction of steepest gradient
 - Another view: decompose problem into self-contained subproblems
- Multi-Step Trajectories: Macro Operators
 - Macros: (inductively) generalize from 2 to > 2 steps
 - Example: Rubik’s Cube
 - Can solve 3 x 3 x 3 cube by solving, interchanging 2 x 2 x 2 cubies
 - Knowledge used to formulate subcube (cubie) as macro operator
 - Treat operator as single step (multiple primitive steps)
- Discussion: Issues
 - How can we be sure macro is atomic? What are pre-, postconditions?
 - What is good granularity (length in primitives) for macro in our problem?
Plateau, Local Optimum, Ridge Solution: Global Optimization

• Intuitive Idea
 – Allow search algorithm to take some “bad” steps to escape from trap states
 – Decrease probability of taking such steps gradually to prevent return to traps

• Analogy: Marble(s) on Rubber Sheet
 – Goal: move marble(s) into global minimum from any starting position
 – Shake system: hard at first, gradually decreasing vibration
 – Marbles tend to break out of local minima but have less chance of re-entering

• Analogy: Annealing
 – Ideas from metallurgy, statistical thermodynamics
 – Cooling molten substance: slow as opposed to rapid (quenching)
 – Goal: maximize material strength of solidified substance (e.g., metal or glass)

• Multi-Step Trajectories in Global Optimization: Super-Transitions

• Discussion: Issues
 – How can we be sure macro is atomic? What are pre-, postconditions?
 – What is good granularity (length in primitives) for macro in our problem?
Beam Search: “Parallel” Hill-Climbing

- **Idea**
 - Teams of climbers
 - Communicating by radio
 - Frontier is only \(w \) teams wide (\(w \equiv \text{beam width} \))
 - Expand cf. best-first but take best \(w \) only \textit{per layer}
 - Synchronous search: push frontier forward at uniform depth from start node

- **Algorithm Details**
 - How do we order OPEN (priority queue) by \(h \)?
 - How do we maintain CLOSED?

- **Question**
 - What behavior does beam search with \(w = 1 \) exhibit?
 - Hint: only one “team”, can’t split up!
 - Answer: equivalent to hill-climbing

- **Other Properties, Design Issues**
 - Another analogy: flashlight \textit{beam} with adjustable radius (hence name)
 - What should \(w \) be? How will this affect solution quality?
Iterative Improvement

Global Optimization (GO) Algorithms

- Idea: Apply Global Optimization with Iterative Improvement
 - Iterative improvement: local transition (primitive step)
 - Global optimization algorithm
 - “Schedules” exploration of landscape
 - Selects next state to visit
 - Guides search by specifying probability distribution over local transitions

- Brief History of Markov Chain Monte Carlo (MCMC) Family
 - MCMC algorithms first developed in 1940s (Metropolis)
 - First implemented in 1980s
 - “Optimization by simulated annealing” (Kirkpatrick, Gelatt, Vecchi, 1983)
 - Boltzmann machines (Ackley, Hinton, Sejnowski, 1985)
 - Tremendous amount of research and application since
 - Neural, genetic, Bayesian computation
 - See: CIS730 Class Resources page
Terminology

- **Heuristic Search Algorithms**
 - Properties of *heuristics*: monotonicity, admissibility
 - Properties of *algorithms*: completeness, optimality, optimal efficiency
 - **Iterative improvement**
 - Hill-climbing
 - Beam search
 - Simulated annealing (SA)
 - **Function maximization** formulation of search
 - **Problems**
 - Ridge
 - Foothill *aka* local (relative) optimum *aka* local minimum (of error)
 - Plateau, jump discontinuity
 - **Solutions**
 - Macro operators
 - Global optimization *(genetic algorithms / SA)*

- **Constraint Satisfaction Search**
Summary Points

• More Heuristic Search
 – Best-First Search: A/A* concluded
 – Iterative improvement
 • Hill-climbing
 • Simulated annealing (SA)
 – Search as function maximization
 • Problems: ridge; foothill; plateau, jump discontinuity
 • Solutions: macro operators; global optimization (genetic algorithms / SA)

• Next Lecture: AI Applications 1 of 3

• Next Week: Adversarial Search (e.g., Game Tree Search)
 – Competitive problems
 – Minimax algorithm