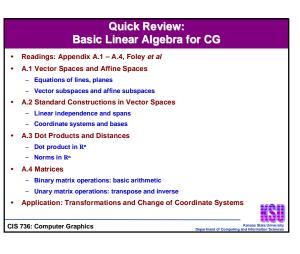
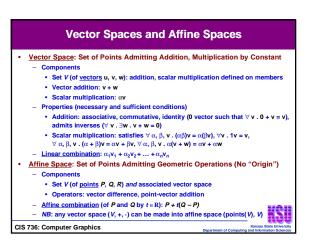
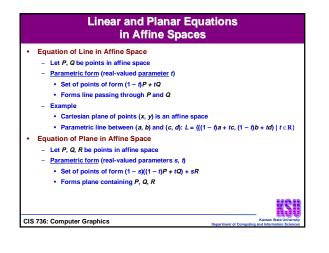


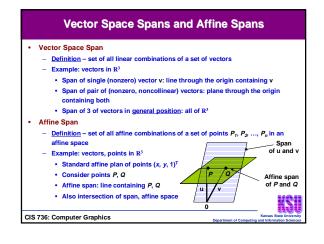
Introductions		
Student Information (Confidential)		
 Instructional demographics: background, demographics 	epartment, academic interests	
 Requests for special topics 		
Lecture		
Project		
On Information Form, Please Write		
- Your name		
 What you wish to learn from this course 		
 What experience (if any) you have with 		
Basic computer graphics		
Linear algebra		
 What experience (if any) you have in using 0 visualization) packages 	CG (rendering, animation,	
 What programming languages you know we 		
 Any specific applications or topics you wou 	Id like to see covered	
736: Computer Graphics	Kansas State University Department of Computing and Information Sciences	

In-Class Exercise		
•	Turn to A Partner	
	- 2-minute exercise	
	 Briefly introduce yourselves (2 minutes) 	
	- 3-minute discussion	
	- 10-minute go-round	
	- 3-minute follow-up	
•	Questions	
	 2 applications of CG systems to HCI problem in your area 	
	- Common advantage and obstacle	
•	Project LEA/RN™ Exercise, Iowa State [Johnson and Johnson, 1998]	
	- Formulate an answer individually	
	- Share your answer with your partner	
	 Listen carefully to your partner's answer 	
	 <u>Create</u> a new answer through discussion 	
	- Account for your discussion by being prepared to be called upon	
cis	736: Computer Graphics Kansas S	

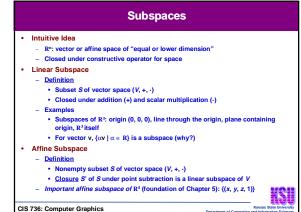








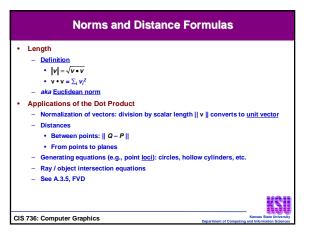
	Independence
•	Linear Independence
	 <u>Definition</u>: (linearly) dependent vectors
	 Set of vectors {v₁, v₂,, v_n} such that one lies in the span of the rest
	• $\exists v_i \in \{v_1, v_2,, v_n\}$. $v_i \in \text{Span}(\{v_1, v_2,, v_n\} \sim \{v_i\})$
	 (Linearly) independent: {v₁, v₂,, v_n} not dependent
•	Affine Independence
	 <u>Definition</u>: (affinely) dependent points
	 Set of points {v₁, v₂,, v_n} such that one lies in the (affine) span of the rest
	• $\exists P_i \in \{P_1, P_2,, P_n\}$. $P_i \in \text{Span}(\{P_1, P_2,, P_n\} \sim \{P_i\})$
	 (Affinely) independent: {P₁, P₂,, P_n} not dependent
•	Consequences of Linear Independence
	- Equivalent condition: $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = 0 \Leftrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$
	 Dimension of span is equal to the number of vectors
CIS	5 736: Computer Graphics Research and Information Sciences

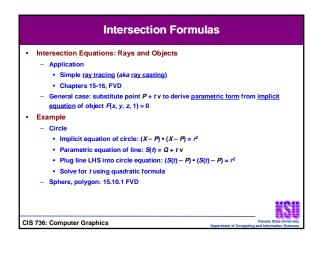


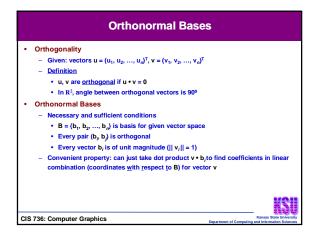
Bases
Spanning Set (of Set S of Vectors)
 <u>Definition</u>: set of vectors for which any vector in Span(S) can be expressed as linear combination of vectors in spanning set
 Intuitive idea: spanning set "covers" Span(S)
Basis (of Set S of Vectors)
- <u>Definition</u>
Minimal spanning set of S
<u>Minimal</u> : any smaller set of vectors has smaller span
 <u>Alternative definition</u>: linearly independent spanning set
Exercise
 <u>Claim</u>: basis of subspace of vector space is always linearly independent
 <u>Proof</u>: by contradiction (suppose basis is dependent not minimal)
• Standard Basis for R ³
- $E = \{e_1, e_2, e_3\}, e_1 = (1, 0, 0)^T, e_2 = (0, 1, 0)^T, e_3 = (0, 0, 1)^T$
- How to use this as coordinate system?
CIS 736: Computer Graphics Kansas State University Department of Computing and Information Sciences

Coordinates and Coordinate Systems				
Coordinates Using Bases				
- Coordinates				
 Consider basis B = {v₁, v₂,, v_p} for vector space 				
Any vector v in the vector space can be expressed as linear combination of vectors in B				
Definition: coefficients of linear combination are coordinates				
- Example				
• $E = \{e_1, e_2, e_3\}, e_1 = (1, 0, 0)^T, e_2 = (0, 1, 0)^T, e_3 = (0, 0, 1)^T$				
 Coordinates of (a, b, c) with respect to E: (a, b, c)^T 				
Coordinate System				
 <u>Definition</u>: set of independent points in affine space 				
 Affine span of coordinate system is entire affine space 				
Exercise				
 Derive basis for associated vector space of arbitrary coordinate system 				
- (Hint: consider definition of affine span)				
CIS 736: Computer Graphics Kansas State University Department of Computing and Information Sciencer				

Dot Products and D	Distances
Dot Product in R ⁿ	
 Given: vectors u = (u₁, u₂,, u_n)^T, v = (v₁, v₂, Definition 	, v _n) ^T
• Dot product $\mathbf{u} \bullet \mathbf{v} \equiv \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$	
<u>Also known as inner product</u>	
In R ⁿ , called <u>scalar product</u>	
Applications of the Dot Product	
 Normalization of vectors 	
- Distances	
 Generating equations See Appendix A.3, Foley <i>et al</i> (FVD) 	
CIS 736: Computer Graphics	Kansas State Universi Department of Computing and Information Science







Terminology

- Human Computer [Intelligent] Interaction (HCI, HCII)
- Some Basic Analytic Geometry and Linear Algebra for CG
 - Vector space (VS) collection of vectors admitting addition, scalar multiplication
 - and observing VS axioms
 <u>Affine space</u> (AS) collection of points with associated vector space admitting vector difference, point-vector addition and observing AS axioms
 - <u>Linear subspace</u> nonempty subset S of VS (V, +, ·) <u>closed</u> under + and ·
 - $= \underline{\text{Affine subspace}} = \text{nonempty subset S of VS (V, +,) <u>subset</u> under + and +$ <u>Affine subspace</u> - nonempty subset S of VS (V, +,) such that <u>closure</u> S of Sunder point subtraction is a linear subspace of V
 - <u>Span</u> set of all <u>linear combinations</u> of set of vectors
 - <u>Linear independence</u> property of set of vectors that none lies in span of others
 - <u>Basis</u> minimal spanning set of set of vectors
 - <u>Dot product</u> scalar-valued <u>inner product</u> <**u**, **v**> = $\mathbf{u} \cdot \mathbf{v} = u_1 \mathbf{v}_1 + u_2 \mathbf{v}_2 + ... + u_n \mathbf{v}_n$
 - Orthogonality property of vectors u, v that u v = 0
 - Orthonormality basis containing pairwise-orthogonal unit vectors
 - Length (Euclidean norm) $\|v\| = \sqrt{v \cdot v}$

CIS 736: Computer Graphics

Summary Points Student Information In-Class Exercise: Turn to A Partner Applications of CG to 2 human-computer interaction (HCI) problems Common advantages After-class exercise: think about common obstacles (send e-mail or post) Quick Review: Some Basic Analytic Geometry and Linear Algebra for CG Vector spaces and affine spaces Linear independence Bases and orthonormality Equations for objects in affine spaces Lines Planes Dot products and distance measures (norms, equations)

- Next Lecture: Geometry, Scan Conversion (Lines, Polygons)
- Next Lecture: Geometry, Scan Conversion (Lines, Polygons)

CIS 736: Computer Graphics

17

Department of Computi

15