
1

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Friday, February 4, 2000

William H. Hsu
Department of Computing and Information Sciences, KSU

http://www.cis.ksu.edu/~bhsu

Readings:

Sections 3.12, 6.5-6.6, Foley et al
Section 6.7, Hearn and Baker 2e

Chapter 2, Sections 4.9, 5.7-5.8, 7.3-7.6, Angel 2e

More Projections and Clipping and
Introduction to OpenGL (Graphics Library)

Lecture 6Lecture 6

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Lecture OutlineLecture Outline

• Projections (Concluded)

– Review: 5-step normalizing transformation for perspective projection (Nper)

– Final operation in implementing view volume: clipping

• Clipping Lines (Introduction)

– Cohen-Sutherland algorithm

– Cyrus-Beck / Liang-Barsky algorithm

• Clipping in 3D

– Extending 2D line clipping algorithms to 3D objects

– Sketch (more later): clipping in homogeneous coordinates

• Introduction to OpenGL (http://www.opengl.org, http://www.mesa3d.org)

– Graphics libraries: history and design rationale

– Specification of graphics libraries: application programmer interfaces (API)

– Key OpenGL functions

• Course Projects: Overview

• Next Lecture: More OpenGL, Introduction to Curves

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

3D Projections3D Projections
and Clippingand Clipping

• Projections (Concluded)

– Parallel projection: cuboid view volume

– Perspective projection: truncated pyramidal view volume (frustum)

– Problem: how to clip?

• Clipping

– Given: coordinates for primitives (line segments, polygons, circles, ellipses, etc.)

– Determine: visible components of primitives (e.g., line segments)

– Methods

• Solving simultaneous equations (quick rejection: testing endpoints)

• Solving parametric equations

– Objectives: efficiency (e.g., fewer floating point operations)

• Clipping in 3D

– Some 2D algorithms extendible to 3D

– Specification (and implementation) of view volumes needed

• Transparent Implementation in Graphics APIs: Later Today

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Normalizing Transformation forNormalizing Transformation for
Parallel ProjectionParallel Projection

• Npar: Transformation (Corresponding to Stack of Primitive Matrix Ops)
• 4-Step Transformation (Section 6.5.1, FVD)

– [1] VRP → origin
• Translate “at point” to origin
• Purpose: normalization for impending rotation

– [2] Rotate (x, y, z) to (u, v, n)
• Align VRC with WC
• Purpose: normalize directional frame of reference according to viewer

– [3] Shear view volume
• Apply SHpar

• Purpose: align center line of view volume with z axis (Figure 6.49, FVD)
– [4] Translate and scale to canonical parallel cuboid

• Nonuniform scaling according to u/v range (Equation 6.35, FVD)
• Purpose: normalize dimensions of view volume (Equation 6.36, FVD)

• Result
– Npar = Spar · Tpar · SHpar · R · T(–VRP)
– Equation 6.36, FVD)

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Normalizing Transformation forNormalizing Transformation for
Perspective ProjectionPerspective Projection

• Nper: Transformation (Corresponding to Stack of Primitive Matrix Ops)
• 5-Step Transformation (Section 6.5.2, FVD)

– [1] VRP → origin
• Translate “at point” to origin
• Purpose: normalization for impending rotation

– [2] Rotate (x, y, z) to (u, v, n)
• Align VRC with WC
• Purpose: normalize directional frame of reference according to viewer

– [3] COP → origin
• Translate “eye” to origin
• Purpose: normalize position of reference according to viewer

– [4] Shear view volume
• Apply SHpar

• Purpose: align center line of view volume with z axis (Figure 6.53, FVD)
– [5] Scale to canonical perspective frustum

• Nonuniform scaling according to ratio of sheared-z to u/v range (Equation
6.39, FVD)

• Purpose: normalize dimensions of view volume (Equation 6.23, FVD)

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Clipping LinesClipping Lines

• Clipping (Sections 3.11-3.12, 6.5.3-6.5.4, FVD; Sections 7.2-7.6, Angel)

– Problem

• Input: coordinates for primitives

• Output: visible components of primitives

– Equational solutions: simultaneous, parametric

– Basic primitive: clip individual points (test against rectangle bounds)

• Lines (Section 3.12, FVD; Section 7.3, Angel)

– Clipping line segment AB against viewing rectangle R

– General idea 1 (equational / regional approach)

• Divide plane into regions about R, see whether AB can possibly intersect

• Find intersections

– General idea 2 (parametric approach)

• Express line as parametric equation(s): 1 matrix or 2 scalar

• Find intersections by plugging into parametric equation (Table 3.1, FVD)

• Use to check clipping cases

2

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Cohen-Sutherland AlgorithmCohen-Sutherland Algorithm

• General Idea 1 [Cohen and Sutherland, 1963]
– Divide plane into 9 regions about and including R

– See whether AB can possibly intersect

• Outcodes: Quick Rejection Method for Intersection Testing
– Unique 4-bit binary number for each of 9 regions

• b0 = 1 iff y > ymax

• b1 = 1 iff y < ymin

• b2 = 1 iff x > xmax

• b3 = 1 iff x < xmin

– Check clipping cases

• 8 floating-point subtractions per line segment, plus integer comparison

• Each line segment has 2 outcodes: o1, o2

• Case 1: o1 = o2 = 0000 – inside; show whole segment

• Case 2: o1 = 0000, o2 ≠ 0000 (or vice versa) – partly inside; shorten

• Case 3: o1 & o2 ≠ 0000 – totally outside; discard

• Case 4: o1 & o2 = 0000 – both endpoints outside; check further !

0000

1000

0100 0110

0010

1010

0001

1001

0101

xmaxxmin

ymin

ymax

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Cyrus-Beck andCyrus-Beck and Liang Liang--BarskyBarsky
AlgorithmsAlgorithms

• General Idea 2 [Cyrus and Beck; Liang and Barsky]

– Express line as parametric equation(s): 1 matrix or 2 scalar

– Find intersections by plugging into parametric equation (Table 3.1, FVD)

– Use to check clipping cases

• Cyrus-Beck Algorithm

– Section 3.12.4, FVD

– More details next class (Lecture 7)

• Liang-Barsky Algorithm

– Section 3.12.4, FVD; Section 7.3.2, Angel

– More details next class (Lecture 7)

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

View Volumes in 3D:View Volumes in 3D:
Perspective Frustum and Parallel Perspective Frustum and Parallel CuboidCuboid

(xmin, ymin, zmin)

(xmax, ymax, zmax)

Based on Figure 7.21,
[Angel, 2000]

(x1, y1, z1)

(x2, y2, z2)

Z

X

Y

View
volume

(frustum)

Center of Projection
(COP)

Based on Figure 5.25,
[Angel, 2000]

and Figure 12-30(b)
[Hearn and Baker, 1997]

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Generic Graphics Package:Generic Graphics Package:
OverviewOverview

• Turn to Your Partners
– People in your row

– Groups numbered counterclockwise (left front to right front)

• Exercise 1 (Now): Generic Graphics Package
– Objective: understanding generic graphics kernels

– Exercise (5 minutes): list

• 3 logical groups of functions that simple graphics kernels have

• 1 criterion for deciding whether kernel function should be implemented in
hardware, software, or as macro

• Exercise 2 (Later Today): Specifying Graphics Transformations
– Objective: understanding shear transformation

– Specification of shear transformation function

– Implementation in OpenGL

• Exercise 3 (Later Today): Applying Graphics Transformations
– Objective: using shear to implement one type of parallel projection from another

– Enhancing capabilities of OpenGL

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

In-Class Exercises (TTYP):In-Class Exercises (TTYP):
Generic Graphics PackageGeneric Graphics Package

• Graphics Kernels
– GKS

– PHIGS (FVD)

– OpenGL

• Generic Graphics Package
– Specification

• Requirements analysis: deciding what to include

• Design of object model

– Implementation

• In hardware

• In software (part of kernel)

• As macros (part of kernel)

• By application programmer

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Generic Graphics Package:Generic Graphics Package:
Typical ComponentsTypical Components

• TTYP Exercise 1a: Typical Components of Generic Graphics Kernels

– 1. Scan conversion

– 2. Transformations

– 3. Clipping

– 4. View specification / rendering

– 5. Texturing / mapping

– 6. 2-D primitives

– 7. Illumination

– 8. Color

• What Else?

– 1. Animation

– 2. Event handling (GUI)

– 3. Window management

3

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Generic Graphics Package:Generic Graphics Package:
SpecificationSpecification

• TTYP Exercise 1b: Criteria for Implementation
– In hardware

• 1. Frequently used

• 2. Need fast implementation

– Library macro

• 1. Fast

• 2. Small, but frequently used

– In software (library function)

• 1. Save space (memory intensive), but not as frequently used

• 2. Portability (possibly platform / OS dependent)

– By applications programmer(s)

• 1. Infrequently used but important to end-user

• 2. Nonstandard techniques or requirements

• How Else Can We Decide At What “Level” To Place Functions?
– 1. Cost issues: speed / frequency of use (generality of purpose) tradeoffs

– 2. Programming language: what are non-graphical primitives?

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

History of History of GGraphics raphics LLibraryibrary (GL)(GL)

• Original GL (Graphics Library)

– Developed by Silicon Graphics, Inc. (SGI)

– Used with C under Irix (SGI Unix variant)

• Main platforms: SGI Indigo

• Later: SGI O2, Octane

• OpenGL Consortium

– See [Angel, 2000] and OpenGL sites

– Support under operating systems, IDEs (WinTel, Linux, MacOS, Amiga)

– Linux flavor: Mesa (http://www.mesa3d.org)

• “99% compliant” version, supported by SGI

• Open source; licensing / validation fees not paid yet

– Recent (last 5-8 years) adoption for academic teaching, research

• Web Resources

– Official OpenGL web site: http://www.opengl.org

– Porting guide, other SGI documentation: http://techpubs.sgi.com:80/library

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

OpenGLOpenGL::
Overview of Utility Toolkit (GLUT)Overview of Utility Toolkit (GLUT)

• Graphics Library Utility Toolkit (GLUT)

– Chapter 2, Angel

– Supplements and related links: http://www.aw.com/cseng

– Links to web resources, code examples: http://www.cs.umn.edu/~angel

– Programs from book: ftp.cs.umn.edu (pub/angel/BOOK)

– General resources: http://www.opengl.org/Documentation/Documentation.html

• Color

– Chapter 13, FVD; Section 2.4, Angel

– More next month

• Viewing

– Chapters 3 and 6, FVD; Section 2.5, Angel

– Tutorial: http://www.eecs.tulane.edu/www/Terry/OpenGL/Introduction.html

• Window System

– Chapter 9, FVD; Section 2.6, Angel

– More in second half of CIS 736

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

OpenGLOpenGL::
Transformation MatricesTransformation Matrices

• OpenGL Matrix Stack (Section 4.9, Angel)
– General syntax: glMatrixOperationf (parameters)
– Loading

• glLoadMatrixf (pointer-to-matrix)
• Special case: glLoadIdentity ()

– Implicit parameter: “currently loaded matrix”
• e.g., glLoadIdentity (); glRotatef (90.0, 1.0, 0.0, 0.0); /* 90 degrees roll */
• NB: convention – postmultiplication (glMultMatrix f)
• Need LIFO: glPushMatrix, glPopMatrix

• Translation
– Syntax: glTranslatef (dx, dy, dz)

• Rotation
– Syntax: glRotatef (angle, vx, vy, vz)
– vx, vy, vz: roll, pitch, yaw components

• Scaling
– Syntax: glScalef (sx, sy, sz)

• Shearing: TTYP Exercise… Write glShear f (parameters)

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

OpenGLOpenGL::
Viewing API and Look-At FunctionViewing API and Look-At Function

• Recall: Viewing Reference Coordinate (VRC) System Specification

– World coordinates (x, y, z)

– Viewing coordinates (u, v, n)

• n ≡ view plane normal

• v ≡ projection of VUP (view-up vector), orthogonal to n, in view plane

• u ≡ third basis vector (orthogonal to n, v; can compute using cross product)

• Look-At Function (Section 5.2.3, Angel)

– Syntax: gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

– eyex, eyey, eyez: specification of eyepoint e (COP aka view point aka position)

– atx, aty, atz: specification of at point a (view reference point aka VRP)

– upx, upy, upz: specification of view up vector (VUP)

• Properties of Viewing API

– VPN = e - a

– Specifies synthetic camera (as discussed last week)

• Now: Ready to Project…

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

OpenGLOpenGL::
Orthographic and Oblique ProjectionsOrthographic and Oblique Projections

• Orthographic Projections in OpenGL (Section 5.7, Angel)

– Orthographic: only parallel projections provided by OpenGL

– Procedure

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

glOrtho (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0); /* canonical view volume */

– General syntax: glOrtho (xmin, xmax, ymin, ymax, zmin ≡ near, zmax ≡ far)

• Implementing Oblique Projections

– Problem: OpenGL provides only pure orthographic projections

• Case where VPN (and projectors) || principal face normal

• Top, front, side elevations

– Solution

• Q: How to implement oblique projection using glOrtho?

• A: Use shear transformation (Chapter 6, FVD; 5.7.2 Angel… Homework 2)

• TTYP exercise: use your glShearf to do this

4

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

The Perspective View VolumeThe Perspective View Volume

Center of Projection
(COP)

View plane

Front
clipping plane

Back
clipping plane

Projectors

View
volume

(frustum)

Based on Figure 5.25,
[Angel, 2000]

and Figure 12-30(b)
[Hearn and Baker, 1997]

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Kansas State UniversityKansas State University
Graphics FacilitiesGraphics Facilities

• KSU Graphics Infrastructure

– Accounts

• Computing and Information Sciences (CIS) department

• All students should already have logins

– Machines: KSU-CIS Beowulf cluster

– Software: Mesa (http://www.mesa3d.org)

• Systems

– Goodland

• Dual boot: Windows NT 4.0, Linux

• Matrox Millenium G400 (32Mb dual-head AGP)

• Priority given to CIS 736 students

– Instructional Linux systems: pending, 32Mb Pentium

– Beowulf cluster: pending, (2) quad Pentium III Xeon-500

• For project use only

• Contact instructional staff to request packages

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Course Project:Course Project:
OverviewOverview

• 3 Components

– Project proposal (20%, 50 points)

– Implementation (50%, 125 points)

– Final report (30%, 75 points)

• Project Proposal (Due 02/14/2000)

– 1-3 page description of project topic, plan

– Guidelines: next (suggested topics, tools to appear on CIS 736 course web page)

– See: implementation practicum links (Brown, Cornell, UNC, others) on 736 page

• Implementation

– Students choice of programming language

– Guidelines: next Wednesday (and on 736 page)

• Final Report

– 4-6 page report on implementation, experimental results, interpretation

– Peer-reviewed (does not determine grade)

– Reviews graded (short report worth 60 points, reviews worth 15 points)

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Course Project:Course Project:
Proposal GuidelinesProposal Guidelines

• Report Contents (1-3 Pages)

– Scope: What kind of CG algorithms will you use?

– Problem: What display problem are you addressing?

– Methodology: How are you addressing the problem?

• Scope

– What rendering, animation, and visualization tools (or codes) will you use?

– What characteristics of the display tools are you trying to deal with / exploit?

• Problem

– Objective: What is your display objective?

– Evaluation: How will you demonstrate (and measure) success?

• Methodology

– Implementation: What will you implement? (general statement, not specification)

– Graphics data representation: How will you manipulate and represent CG data?

– Infrastructure: What programming languages and platform(s) will you use?

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

TerminologyTerminology

• Normalizing Transformations
– Npar: normalizing transformation for parallel projection (6.5.1, FVD)

– Nper: normalizing transformation for perspective projection (6.5.2, FVD)

– M: conversion matrix from perspective to parallel view volume (6.5.4, FVD)

– N’per = M · Sper · SHpar · T(–PRP) · R · T(–VRP) (Equation 6.49, FVD)

• Clipping: Determining Parts of Primitives to Display
– Cohen-Sutherland: line clipping algorithm

• Division of plane into 9 regions with (4-bit) outcodes

• Testing endpoints of line segment

– Parametric clipping: line / rectangle intersection using parametric equation

• Cyrus-Beck: general convex 3D polyhedron

• Liang-Barsky: more efficient, specialized variant (upright 2D, 3D clip regions)

• Clipping in 3D
– Cuboid: truncated viewing pyramid used to clip after Npar

– Frustum: truncated viewing pyramid

• OpenGL: Multiplatform, Standardized Graphics Library and API

Kansas State University
Department of Computing and Information Sciences

CIS 736: Computer Graphics

Summary PointsSummary Points

• Projections: Review of Nper

– [1] VRP → origin

– [2] Rotate (x, y, z) to (u, v, n)

– [3] COP → origin

– [4] Shear view volume

– [5] Scale to canonical perspective frustum

• Clipping Lines: Cohen-Sutherland, Liang-Barsky (Cyrus-Beck)

• Clipping in 3D

• Introduction to OpenGL (http://www.opengl.org, http://www.mesa3d.org)

– Graphics libraries: history, design rationale, specification, APIs

– Key OpenGL functions

• Course Projects: Overview

• Next Lecture

– More OpenGL (Sections 10.1-10.6, Angel)

– Intro to cubic curves (11.1, 11.2.1-11.2.2, FVD; 10.6-10.8, Hearn and Baker)

