

Curve Representatio Overview	ns:
Representations Polygon mesh Parametric cubic equations (splines, etc.) Parametric Cubic Curves (Table 11.2, FVD) Hermite curves Bezier curves	
 Cubic splines Uniform B-splines Uniformly shaped β-spline Nonuniform B-splines (rational: NURBS; nonratio Catmuli-Rom Kochanek-Bartels 	inal)
References Section 11.2, FVD 10.6-10.8, Hearn and Baker 2°, 10.1-1.3,10.6, Angel 2°	KSI
CIS 736: Computer Graphics	Kansas State University Department of Computing and Information Sciences

Course Project: Suggested Topics
Photorealistic Rendering
 Scene illumination – ray tracing, radiosity, fast shading, etc.
 <u>Artificial objects</u> – transparent surfaces, faces, natural scenes
Realistic Animation
 Animating specific entities – human faces, hair, bodies, etc.
 <u>Advanced topics</u> – physically based modeling, particle systems, etc.
Image Processing
 <u>2D image transformation</u> – compression, correction, etc.
 <u>2D image analysis</u> – edge detection, pattern recognition, KDD, etc.
 <u>Mapping</u> – texture, bump, etc.
Visualization
 <u>Statistical data visualization, information visualization</u>
 <u>Scientific visualization</u> – fluid dynamics, geology, groundwater, etc.
Mathematical Modeling
- Geometric models: curves, surfaces, 3D solid models, etc.
- <u>Fractal image synthesis</u> , fractal image compression, other
CIS 736: Computer Graphics Kansas State University Department of Computing and Information Sciences

Course Project: More Guidelines
Project Proposal (Due 02/14/2000)
 1-3 page description of project topic, plan
- See: implementation practicum links (Brown, Cornell, UNC, others) on 736 page
Guidelines
 Specify <u>focus</u> of your project
 Implementation (e.g., "write a simple animator for articulated figures")
• Experiments with existing algorithms (e.g., "compare texture mappers A, B")
 Experiments with visualizing data and processes (e.g., "write a visualization front end for integrity checking in DBMS D")
 Extending or combining existing algorithms (e.g., "add multiple light-source technique to ray tracer R")
 Applying CG techniques to specific problem (e.g., "rendering back end for solid CAD/CAM machining model")
 State how will you demonstrate your results
How will you measure or show success?
Make sure your goals are sufficiently narrow and realistic
Three Parts: Proposal (20%), Implementation (50%), Report (30%)
CIS 736: Computer Graphics Kansas State University

Review: Normalizing Transformations
$- N'_{per} = M \cdot S_{per} \cdot SH_{par} \cdot T(-PRP) \cdot R \cdot T(-VRP) \text{(Equation 6.49, FVD)}$
 M: nonuniform scaling transformation (perspective-to-parallel)
Line Clipping: Determining Parts of Line Segment Primitives to Display
 Quick rejection testing for <u>simultaneous equations</u> (Cohen-Sutherland)
 Division of plane into 9 regions with (4-bit) outcodes
Testing endpoints of line segment
 Parametric clipping: line / rectangle intersection using parametric equation

51

 <u>Cyrus-Beck</u>: general convex 3D polyhedron • Liang-Barsky: more efficient, specialized variant (upright 2D, 3D clip regions) Clipping in 3D

Terminology

- <u>Cuboid</u>: truncated viewing pyramid used to clip after N_{par}
 <u>Frustum</u>: truncated viewing pyramid
- Cubic Curves

.

- <u>Definition</u>: representation of curve by polynomial (usually smooth) of order 3
- Interpolation: fitting curves given specified (control) points

CIS 736: Computer Graphics

Summary Points • Quick Review: 3D Viewing

3D view volume

- Perspective-to-parallel transformation (Section 6.5, FVD)
- Clipping (Concluded)
 - Quick review: problem definition, objectives, general approaches
 - Simultaneous equations and quick rejection test (Cohen-Sutherland)
 - Parametric clipping (Cyrus-Beck / Liang-Barsky)
 - Clipping in 3D (extending Cohen-Sutherland, Liang-Barsky)
 - Clipping polygons, curves

 - Clipping against windows (exterior clipping)
- Introduction to Curve Representations
 - Cubic curves: Bézier curves, cubic B-splines
 - Cubic surfaces: next
- Read about polygon meshes, Bézier curves, B-splines for next time!
- Next Lecture: Cubic Curves and Surfaces

CIS 736: Computer Graphics

8