

More on Curves and Parametric Bicubic Surfaces

Wednesday, February 16, 2000

William H. Hsu Department of Computing and Information Sciences, KSU http://www.cis.ksu.edu/~bhsu

> Readings: Sections 11.1-11.3, Foley et al (Reference) Sections 10.1-10.13, Hearn and Baker 2e

CIS 736: Computer Graphics

(SI

CIS 73	36: Comput	er Graphics	

Quick Review: **Hermite Curves**

- Definition - Curve defined in terms of piecewise cubic segments
- Basis matrix: M_H(Equation 11.19, FVD)
- System of (3) cubic polynomials: Q(t) = [x(t) y(t) z(t) 1] (Equation 11.9, FVD)
- Derivation: Section 11.2.1, FVD (Equations 11.12-11.19)
- **Distinguishing Characteristics**
- <u>Direct specification</u> of curves, <u>blended</u> to form target curve; no control points Inherently C^0 and G^0 continuous (Why? First of all, $C^0 \equiv G^0$)
- Pros

 - Easy to get C¹ and G¹ continuity (How? See constraints: Equation <u>11.22</u>)
 Easy to display: evaluate Equation 11.5 FVD (i.e., Q(f) = T M G) at n successive values of t
 - Nice interactive representation: good for graphical front-ends
- Cons
 - Computing blended curve: good but suboptimal subdivision procedure
 - See Section 11.2.7, FVD; Section 10.13, Hearn and Baker

CIS 736: Computer Graphics

Properties of Cubic Curves: Definitions **Representation:** Q[t] = [x(t) y(t) z(t)]Polynomial (here, cubic) system m: Equations 11.5-11.6, FVD Matrix of coefficients C Continuity Two curve segments join together: G⁰ geometric continuity Directions (not necessarily magnitudes) of tangent vectors equal at join point: G1 geometric continuity Tangent vectors equal at join point: C¹ continuity (camera analogy) nth derivative of system (dⁿ/dtⁿ [Q(f)]) equal at join point: Cⁿ <u>continuity</u> Exercise: when does C¹ continuity not necessarily imply C¹? (Figure 11.10, FVD) Uniformity <u>Knot</u>: join point between segments of *piecewise cubic* curve <u>Uniform</u>: knots spaced at equal intervals Rationality Rational: x(t), y(t), z(t) each defined as ratio of two cubic polynomials Can define in homoge eous coordinates: see Section 11.2.5, FVD 6

CIS 736: Computer Graphics

QUICK REVIEW: Bézier Curves		
•	Definition	
	 Another piecewise cubic curve 	
	Defined indirectly	
	Control points: 2 on curve, 2 not on curve	
	- Basis matrix	
	• $M_B = M_H \cdot M_{HB}$ (Equation <u>11.28</u> , FVD)	
	 Derivation: Section 11.2.2, FVD (Equations 11.25-<u>11.28</u>) 	
•	Distinguishing Characteristics	
	 Indirect specification of curves; convex control polygon 	
	 Inherently C⁰ and G⁰ continuous; easy to get C¹ and G¹ continuity 	
•	Pros	
	 Combinatorially simple basis functions (Bernstein polynomials) 	
	 Easy to convert from Hermite! (11.2.2, FVD; 10.12, Hearn and Baker) 	
•	Cons	
	 Not as intuitively manipulable as Hermite (see Figure 11.23, FVD) 	

CIS 736: Computer Graphics

(51

Uniform, Nonrational B-Splines		
Definition Locally controlled model (true of all <i>B</i> -splines <i>aka</i> basis splines)		
Definition: polynomial coefficients depend on few control points		
 Result: very smooth but (one hopes) not too slow 		
 Basis matrix ("B" stands for "basis") 		
 <i>M_{Bs}</i> (Equation <u>11.34</u>, FVD) 		
 Derivation: Section 11.2.3, FVD (Equations 11.32-<u>11.34</u>) 		
Distinguishing Characteristics		
 Uniform (spacing of knots), nonrational (not expressed as ratio of equations) 		
- No interpolation (true of B-splines in general except for specific cases)		
Pros		
 Flexible, most smooth: inherently C² and G² continuous 		
 Speed through uniformity 		
- Easy to convert to Hermite, Bézier for display vs. design (10.12, Hearn and Baker)		
Cons		
Curve "must" be smooth (can't reduce continuity)		
CIS 736: Computer Graphics Kansas State University Department of Computing and Information Sciences		

	(NURBS)		
•	Definition		
	 Yet another locally controlled model 		
	 Nonuniform, rational polynomial curve segments 		
	Generalizes over arbitrary piecewise polynomial curves		
	 Segment = B-spline ⇒ NURBS 		
	 Rational form in homogenous coordinates (HC): Equation 11.45, FVD 		
•	Distinguishing Characteristics		
	 Nonuniform (spacing of knots) 		
	- Rational		
 Trivial conversion: add W(t) = 1 to get HC representation 			
	Compare: NUR Hermite, Bézier		
	 No interpolation; 5 control points (see Figures 11.28 and 11.29, FVD) 		
•	Pros		

18

ISI

Nonuniform, Rational B-Splines

Pros
 Most smooth: inherently C² and G² continuous
 Very flexible, popular (despite computational complexity)
Cons
- Very slow to converge with enough segments (true for all nonuniform)

CIS 736: Computer Graphics

Beta (p-Splines)
Purpose: surface design (CAD)
- Distinguishing characteristics: 2 parameters (β_1 , β_2), geometry as for <i>B</i> -spline, convex control polygon; partly local (4 points per CP, 2 global)
 Pros: further control over shape (see basis matrix: M_β - Equation 11.48, FVD)
– Cons: can be somewhat computationally intensive (uniform but $\textbf{\textit{M}}_{\!\beta}$ more complex
Catmull-Rom (aka Overhauser)
 Purpose: for animating motion - mouse trajectory, camera in 3D, etc. (Coming soon to a homework near you!)
 Distinguishing characteristics: local control, interpolation / approximation
 Pros: smooth transitioning (see basis matrix: M_{CR})
- Cons: another tradeoff (need speed); not fastest, but much faster than NURBS
Kochanek-Bartels
- Purpose: controlling animation
 Distinguishing characteristic: similar to Hermite form
- Pros: fast (but not fastest)
- Cons: another tradeoff: good interface

Other Splines

Companian of Cubic (1.1.1.1.0.0
JOIND ARISON OF GUOIC U	AUT VES

Hermite

- Blend 4 functions; no CP; full interpolation; C¹ and G¹ with constraints; fast
- Bézier
- Convex CP: interpolate 2 of 4 control points: C¹ and G¹ with constraints: fastest
- **B**-splines
 - Uniform, nonrational • Convex CP, 4 points each, no interpolation; C² and G²; medium
 - Nonuniform, nonrational
 - * Convex CP, 5 points each, "no interpolation"; "up to" C^2 and G^2 ; slow
- Nonuniform, rational • Convex CP, 5 points each, "no interpolation"; rational; "up to" C² and G²; slow Beta Splines (β-Splines)
- Convex CP; 6 points to control curve (4 local points, 2 global); C¹ and G²; medium Catmull-Rom Splines
- General CP; interpolate or approximate 4 points per CP; C¹ and G¹; medium
- Kochanek-Bartels Splines
- General CP; interpolate 7 points per CP; C¹ and G¹; medium

CIS 736: Computer Graphics

Paper Reviews [1]: **General Information**

- 3 of 4 (Assigned) Reviews Required
 - All reviews worth 15% of course grade
 - Choose 3 of 4 (may have > 1 choice on some) or write all 4 - Lowest dropped (each of remaining 3 worth 50 of 1000 points)
- General Objectives
- Compare, evaluate CG techniques (synthesis, processing, visualization)
- Guidelines: next (suggested topics, tools to appear on CIS 736 course web page)
- Review Topics
- Modeling, rendering, animation, information visualization Selection criteria: target length 10 pages; no more than 15 pages
- .
- Logistics
- Papers will be available online (and at 17 Seaton Hall) next week
- Send to CIS 736 GTA (Songwei Zhou) at cis736ta@ringil.cis.ksu.edu
- Turn in by midnight of due date (no late reviews)
- Get back commented reviews in electronic form
- CIS 736: Computer Graphics

18

Paper Reviews [2]: Specific Objectives			
Modeling			
 "The right representation is half the battle" 			
 "Graphics database formats + rendering / animation algorithms = CG programs" 			
Rendering			
 Image synthesis: aspects of realism 			
 "The right tool for the right job" 			
Animation			
– What's beneficial, what's overkill?			
– What's easy, what's hard?			
Information Visualization			
 How to avoid "saying nothing" and "telling lies" with graphs 			
 How to maximize information, not "ink" (screen / disk usage, etc.) 			
Overall: Be Able To			
 Justify using CG technique X in scenario S 			
 Select and develop appropriate (practical) CG techniques 			
CIS 736: Computer Graphics Kansas State Universil Department of Computing and Information Science			

Terminology	Summary Points
 Cubic Curve Representations Polygon meshes: using many polygons to represent 3D surface Parametric cubic curves: Hermite, Bézier, splines Curve properties Uniformity: knots (aka join points) spaced at even intervals Rationality: segment expressible as ratio of polynomial parametric functions Continuity: geometric (0°, 0°, 0°); differentiability (0°, 0°, 0°) Splines: smooth parametric cubic curves B- (UN, NUN, NUR = NURBS): locally controlled, non-interpolative Beta: (b): semi-locally controlled, non-interpolative Catmult-Rom: for smooth, fast camera animation Kochanek-Bartels: for smooth, fast object animation Control polygon: "closed" curve region defined by set of points Interpolation by Subdivision Bicubic Surfaces: Expressed as Patches (4 Cubic Curves) 	 Cubic Curve Representations (Concluded) Polygon meshes and parametric cubic curves Hermite and Bézier curves Splines: B- (UN, NUN, NUR = NURBS), Beta- (β-), Catmull-Rom, Kochanek-Bartels Interpolation by Subdivision Properties Uniformity, rationality Continuity: C¹, C², C² Interpolation, number, and geometry of <u>control points</u> Implementing Bicubic Surfaces using Parametric Curves Next Class: 3D Graphics Data Structures Read or review polygon meshes (11.1 FVD) Chapter 12 FVD: lead-in to (basics of) solid modeling for CAD / CAM Read about boundary representations (B-reps), spatial partitioning
S 736: Computer Graphics Kansas State University Department of Computing and Information Sciences	CIS 736: Computer Graphics Ransas State Universit Department of Computing and Information Science