










Paper Reviews [2]: Specific Objectives		
•	Modeling	
	 "The right representation is half the battle" 	
	- "Graphics database formats + rendering / animation algorithms = CG programs"	
•	Rendering	
	 Image synthesis: aspects of realism 	
	 "The right tool for the right job" 	
•	Animation	
	– What's beneficial, what's overkill?	
	– What's easy, what's hard?	
•	Information Visualization	
	 How to avoid "saying nothing" and "telling lies" with graphs 	
	 How to maximize information, not "ink" (screen / disk usage, etc.) 	
•	Overall: Be Able To	
	 Justify using CG technique X in scenario S 	
	Select and develop appropriate (practical) CG techniques	
CIS	736: Computer Graphics Kansas State University Department of Computing and Information Science	

	Paper Reviews [3]: Do's and Don'ts
•	Do
	- Use typical
	• Font (Times, Arial, etc.), type size (10-12 point), spacing (single), margins
	Length (1-2 pages)
	- <u>Cite your sources</u>
	 Use spelling and grammar checkers (and check carefully by hand)
	 Write in <u>complete sentences</u> and your own words
	 <u>Discuss</u> paper
	Significance, audience
	 Pros, cons (Does CG method meet objectives? Why or why not?)
	 Applications <u>you</u> would like to see in future work
	 Open (unanswered) questions! (Read carefully)
•	Don't
	- Merely
	 Quote paper, authors, bibliographic references, or other reviews
	 Summarize content of paper without evaluation and discussion
	Critique without justification ("This paper was {bad vague great}.")
cis	5 736: Computer Graphics Kansas State University Department of Computing and Information Sciencer

Terminology

- Interpolation versus Approximation (Section 10.6, Hearn and Baker)
 - Interpolation: fit curve through specified points
 - <u>Approximation</u>: fit curve to control path (without necessarily passing through)
 - deCasteljau's Algorithm: Recursive Subdivision Algorithm for Interpolation
- Bicubic Surfaces
 - Types: Hermite (11.3.1 FVD), Bézier (11.3.2 FVD), B-splines (11.3.3 FVD)
 - <u>Coons patch</u>: generalization of Hermite patch form to arbitrary <u>boundary curves</u>
- 3D Graphics Data Structures .
 - <u>Regularized Boolean set operations</u>: ∪*, ∩*, -* (12.2 FVD)
 - Primitive instancing: parameterized object-like 3D solid representation (12.3 FVD)
 - Sweep representations: objects moved along trajectory define others (12.4 FVD)
 - Boundary representations aka B-reps: vertex, edge, face descriptions (12.5 FVD) Polyhedra: solid bounded by poygons, satisfying Euler's formula (12.5.1 FVD)
 - Winged edge: vertex-edge-face data structure (12.5.2 FVD) 5
 - Composition of B-reps using Boolean set operations (12.5.3 FVD)

CIS 736: Computer Graphics

Summary Points Quick Review: Properties of Cubic Curves and Splines · Interpolating Cubic Curves and Surfaces deCasteljau's algorithm for curves - 11.2.7 FVD Bicubic surface interpolation (concluded) - 11.3.5 FVD • 3D Graphics Data Structures (Chapter 12, FVD) - Representing solids - 12.1 FVD Regularized Boolean set operations, primitive instancing, sweep representations Boundary representations (aka B-reps) – 12.5 FVD • Polyhedra, winged edge (Mantyla) Composition of B-reps using Boolean set operations Role of Graphics Data Structures in <u>Visible Surface Determination (VSD)</u> Next Lecture Spatial partitioning representations – 12.6 FVD Cell decomposition

CIS 736: Computer Graphics

15