

Spatial Partitioning [1]: Cell Decomposition

- Intuitive Idea
- Define set of primitive cells (typically parametric, often curved)
- Difference from primitive instancing: "glue" primitive objects together
- Glue operation (part of specification): non-intersecting "union"
- Example: join two objects at specified faces

Tradeoffs

- Advantages
- Results in unambiguous descriptions of complex objects
- Admits additional specification (e.g., how object faces joined)
- Disadvantages
- Descriptions not necessarily unique (see Figure 12.19, FVD)
- May be difficult to validate (model checking: many intersection tests needed)

When to Use
Restrictive constraint language available (cuts down number of validation cases)
Example: finite element analysis ("glue spec" determines physical model)
CIS 736: Computer Graphics

Terminology

- Modeling Solid Objects
- Data structures
- Boundary representations (aka B-reps): describe solid in terms of surfaces - Spatial partitioning representations: describe solid in terms of subparts
- Basic algorithms
- Construction (aka composition): form new structure by composing primitives
- Intersection: compute intersection point (if any) with ray, line, other structure
- Point classification: tell whether query point lies inside or outside

Spatial Partitioning

- Cell decomposition: breaking complex object up into primitive cells
- Planar and spatial occupancy
- Voxel: volumetric unit (typically cubic, resulting in cuberille)
- Hierarchical: variable-granularity decomposition, e.g., quadtrees and octrees
- Binary Space Partitioning (BSP) tree: break space up into half-spaces
- Constructive Solid Geometry (CSG): combine primitives using Boolean set operators and modify them using (unary) transformation operations

CIS 736: Computer Graphics

CIS 736: Computer Graphics

Summary Points

- Solid Modeling: Overview
- Data structures
- Boundary representations (B-reps): last time
- Spatial partitioning representations: today
- Algorithms
- Construction (composition)
- Intersection, point classification
- Know: difference between B-reps and spatial partitioning; pros and cons
- Spatial Partitioning (Review Guide)
- Cell decomposition - know how to obtain for composite object (simple primitives)
- Planar and spatial occupancy
- Simple: uniform subdivision (grid / pixel, volumetric / voxel)
- Hierarchical: quadtrees and octrees - know how to obtain for 2D, 3D scenes
- Binary Space Partitioning (BSP) trees - know how to obtain for simple 2D object
-
- Next Class: Color Models; Visible Surface Data Structures

CIS 736: Computer Graphics

