

Spatial Partitioning [1]: Cell Decomposition	Uniform
Intuitive Idea Define set of primitive cells (typically parametric, often curved) Difference from primitive instancing: "glue" primitive objects together <u>Glue</u> operation (part of specification): non-intersecting "union" Example: join two objects at specified faces Tradeoffs Advantages Results in unambiguous descriptions of complex objects	Intuitive Idea Special case o Cells: pixels (p elements) for s Most common Tradeoffs Advantages Easy to per Easy to per
Admits additional specification (e.g., <i>how</i> object faces joined) Disadvantages Descriptions not necessarily unique (see Figure 12.19, FVD) May be difficult to validate (model checking: many intersection tests needed) When to Use Restrictive constraint language available (cuts down number of validation cases) Example: finite element analysis ("glue spec" determines physical model)	 Disadvantages No "partial Expensive When to Use Applications w Examples: bio nondestructive
CIS 736: Computer Graphics Kansas State University Department of Computing and Information Sciences	CIS 736: Computer Gra

Terminology

- Modeling Solid Objects
 - Data structures
 - Boundary representations (aka B-reps): describe solid in terms of surfaces Spatial partitioning representations: describe solid in terms of subparts
 - **Basic algorithms**
 - Construction (aka composition): form new structure by composing primitives · Intersection: compute intersection point (if any) with ray, line, other structure
 - · Point classification: tell whether query point lies inside or outside
- Spatial Partitioning
 - Cell decomposition: breaking complex object up into primitive cells
 - Planar and spatial occupancy

 - <u>Voxel</u>: volumetric unit (typically cubic, resulting in <u>cuberille</u>)
 - <u>Hierarchical</u>: <u>variable-granularity</u> decomposition, e.g., <u>quadtrees</u> and <u>octrees</u>
 - $\underline{\textbf{B}} \underline{\textbf{inary }} \underline{\textbf{S}} \underline{\textbf{pace }} \underline{\textbf{P}} artitioning (\textbf{BSP}) tree: break space up into half-spaces$
 - Constructive Solid Geometry (CSG): combine primitives using Boolean set operators and modify them using (unary) transformation operations (51

CIS 736: Computer Graphics

Solid Modeling: Overview - Data structures • Boundary representations (B-reps): last time Spatial partitioning representations: today Algorithms Construction (composition) Intersection, point classification Know: difference between B-reps and spatial partitioning; pros and cons Spatial Partitioning (Review Guide) Cell decomposition - know how to obtain for composite object (simple primitives) Planar and spatial occupancy

Summary Points

- Simple: uniform subdivision (grid / pixel, volumetric / voxel) Hierarchical: guadtrees and octrees – know how to obtain for 2D. 3D scenes Binary Space Partitioning (BSP) trees - know how to obtain for simple 2D object
- Constructive Solid Geometry (CSG) know typical primitives, how to combine
- Next Class: Color Models; Visible Surface Data Structures
- CIS 736: Computer Graphics

1