Lecture 12

Color Theory and Visible Surface Data Structures

Friday, February 25, 2000

William H. Hsu Department of Computing and Information Sciences, KSU http://www.cis.ksu.edu/~bhsu

> Readings: Chapter 13, Sections 15.1-15.2, Foley et al (Reference) Hearn and Baker 2e Slide Set 6, VanDam (5, 10/05/1999)

151

.

•

CIS 736: Computer Graphics

	Lecture Outline
•	Readings
	 Chapter 13 and Sections 15.1-15.2, Foley et al
	 Outside reading (optional): Hearn and Baker 2^e
	 Outside reading (required): Slide Set 5, VanDam (10/05/1999)
•	Recently
	- Surface models
	 Solid modeling, CSG
•	Today
	 Quick review: BSP trees, Constructive Solid Geometry (CSG)
	- Color theory
	Basic issues: representing color (intensity-based and chromatic color, etc.)
	Theories of color from psychophysics, colorimetry, neurobiology
	 Important color models: RGB, CIE Chromaticity Diagram, HSV
	Visible surface determination: basics (data structures)
	Next Week
	 Wrap-up of visible surface determination (Wednesday)
	- Realism in CG: overview (Wednesday)
	- Midterm review (Friday)

Terminology Theory of Color Achromatic light: intensity (quantity) only Chromatic light: hue, saturation, vividness (value) Modeling color transmission (object) and perception (viewer)

<u>Psychophysics</u>: based on cognitive (psychological) model; subjective Colorimetry: based on physical (optical) model; objective <u>Neurobiology</u>: study of brain, central nervous system (including sensorimotor system – in color perception, visual cortex and retina are important) Color Ranges (aka <u>Color Gamuts</u>) and <u>Color Models</u>
– <u>Gamut</u>: range of wavelengths (visible subspace of <u>color space</u>) . Model: coordinate system, subset corresponding to gamut
 <u>Moder</u>: coordinate system, subset corresponding to gamut
 • <u>Red-Green-Blue (RGB) / Cyan-Magenta-Yellow (CMY): Cartesian</u>

 • <u>Commission Internationale de l'Éclairage (CIE): normalized color space</u>
 Hue-Saturation-Yalue (HSV): ???
Interpolation in color space: <u>Gouraud shading, antialiasing, blending (fading)</u> Using Color in CG Applications: <u>aesthetics</u>, communication (e.g., <u>visualization</u>) Criteria for effectiveness: harmony, coding redundancy 15 CIS 736: Computer Graphics

Summary Points • Quick Review: BSP Trees and CSG Color Light and images: achromatic (e.g., bitmaps, halftoning, grayscale), chromatic Modeling color transmission (colorimetry) versus perception (psychophysics, neurobiology) Modeling color CIE: luminance-independent model, <u>chromaticity diagram</u> (normalized color space for computing coefficients in <u>color matching function</u>) Color gamuts; color models (RGB/CMY, CIE, HSV; others) Using Color Effectively in CG - Criteria: functionality (transmitting information; GUI), minimal distraction Goals, methods, and pitfalls (see Section 13.5 FVD!) Harmony: modulation of intensity versus hue contrast Coding: vary fine detail from background in brightness and chromaticity Next Week - Visible surface determination (read Sections 15.3-15.8) Visual realism (skim Chapter 14, FVD) Ы CIS 736: Computer Graphics