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Introductions

« Student Information (Confidential)
— Instructional demographics: background, department, academic interests
— Requests for special topics
* Lecture
* Project
+ On Information Form, Please Write
— Your name
— What you wish to learn from this course
— What experience (if any) you have with
« Artificial intelligence
« Probability and statistics

— What experience (if any) you have in using KDD (learning, inference; ANN, GA,
probabilistic modeling) packages

— What programming languages you know well

— Any specific applications or topics you would like to see covered K’S“
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About Paper Reviews

Lecture Outline

* Quick Review
— Output of learning algorithms
« What does it mean to learn a function?
+ What does it mean to acquire a model through (inductive) learning?
— Learning methodologies
« Supervised (inductive) learning
« Unsupervised, reinforcement learning
« Inductive Learning
— What does an inductive learning problem specification look like?
— What does the “type signature” of an inductive learning algorithm mean?
— How do inductive learning and inductive bias work?
* Analytical Learning
— How does analytical learning work and what does it produce?
— What are some relationships between analytical and inductive learning?

« Integrating Inductive and Analytical Learning for KDD KSU
B |
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In-Class Exercise

« Turnto A Partner
— 2-minute exercise
— Briefly introduce yourselves (2 minutes)
— 3-minute discussion
— 10-minute go-round
— 3-minute follow-up
* Questions
— 2 applications of KDD systems to problem in your area
— Common advantage and obstacle
« Project LEA/RN™ Exercise, lowa State [Johnson and Johnson, 1998]
— Formulate an answer individually
— Share your answer with your partner

— Listen carefully to your partner’s answer
— Create anew answer through discussion

— Account for your discussion by being prepared to be called upon K’Sm
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About Presentations

* 20 Papers
— Must write at least 15 reviews
— Drop lowest 5
« Objectives
— To help prepare for presentations and discussions (questions and opinions)

— To introduce students to current research topics, problems, solutions,
applications

* Guidelines
— Original work, 1-2 pages
« Do not just summarize
« Cite external sources properly
— Critique
« Intended audience?

+ Key points: significance to a particular problem?

« Flaws or ways you think the paper could be improved? K’S“
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« 20 Presentations
— Every registered student must give at least 1
— If more than 20 registered, will assign duplicates (still should be original work)
— First-come, first-served (sooner is better)
« Papers for Presentations
— Will be available at 14 Seaton Hall by Monday (first paper: online)
— May present research project in addition / instead (contact instructor)
* Guidelines
— Original work, ~30 minutes
« Do not just summarize
« Cite external sources properly
— Presentations

« Critique
« Don't just read a paper review:  help the audit understand sig
+ Be prepared for 20+ minutes of questions, discussion K’S“
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Quick Review:

Output of Learning Algorithms

 Classification Functions
— Learning hidden functions: estimating (“fitting”) parameters

— Concept learning (e.g., chair, face, game)

— Diagnosis, prognosis: medical, risk assessment, fraud, mechanical systems
* Models

— Map (for navigation)

— Distribution (query answering, aka QA)

— Language model (e.g., automaton/grammar)
« Skills

— Playing games

— Planning

— Reasoning (acquiring representation to use in reasoning)
« Cluster Definitions for Pattern Recognition

— Shapes of objects

— Functional or taxonomic definition
* Many Problems Can Be Reduced to Classification
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Quick Review:

Learning Methodologies

* Supervised
— What is learned? Classification function; other models
- Inputs and outputs? Learning: examples (x,f(x)) - approximation f(x)
— How is it learned? Presentation of examples to learner (by teacher)
¢ Unsupervised
— Cluster definition, or vector quantization function (codebook)
— Learning: observations x x distance metric d(xl,xz) - discrete codebook f(x)
— Formation, segmentation, labeling of clusters based on observations, metric
» Reinforcement
— Control policy (function from states of the world to actions)
— Learning: state/reward sequence {<s,,r,>:1sis n} - policy p:s — a
— (Delayed) feedback of reward values to agent based on actions selected; model
updated based on reward, (partially) observable state

Example:
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Quick Review:
Inductive Generalization Problem

Inductive Learning Problem
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| Example

X2 3 ] y |
0 0 1 1 0 0
1 0 0 0 0 0
2 0 0 1 1 1
3 1 0 0 1 1
4 0 1 1 0 0
5 1 1 0 0 0
6 0 1 0 1 0
Xty F(t Xty xtgxt,) -t
« Our learning function: Vector (t; X t, X tyx t,; xt) — (t; xt,xtyxt,) -t i il
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« Given
— Instances X: possible days, each described by attributes Sky, AirTemp,
Humidity, Wind, Water, Forecast
— Target function ¢ = EnjoySport: X — H = {{Rainy, Sunny} x {Warm, Cold} x
{Normal, High} x {None, Mild, Strong} x {Cool, Warm} x {Same, Change}} - {0,
1

— Hypotheses H: e.g., conjunctions of literals (e.g., <?, Cold, High, ?, ?, ?>)
— Training examples D: positive and negative examples of the target function

(%060 )}y os (Xm(xm))
« Determine
— Hypothesis h [7Hsuch that h(x) = c(x) for all x 7D
— Such hare consistent with the training data
« Training Examples
— Assumption: no missing X values
— Noise in values of ¢ (contradictory labels)?
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Inductive Systems

« Fundamental Assumption: Inductive Learning Hypothesis
— Any hypothesis found to approximate the target function well over a
sufficiently large set of training examples will also approximate the target
function well over other unobserved examples
— Definitions deferred
« Sufficiently large, approximate well, unobserved
« Statistical, probabilistic, computational interpretations and formalisms
* How to Find This Hypothesis?
— Inductive concept learning as search through hypothesis space H
— Each pointin H=subset of points in X (those labeled “+", or positive)
* Role of Inductive Bias

— Informal idea: preference for (i.e., restriction to) certain hypotheses by
structural (syntactic) means
— Prior assumptions regarding target concept

— Basis for inductive generalization !!_QI_
HE M
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and Equivalent Deductive Systems

Inductive System

Candidate Elimination
Algorithm

Training Examples Classification of New Instance

(or “Don’t Know")

New Instance
——— | Using Hypothesis

Space H

Equivalent Deductive System

Training Examples
Classification of New Instance
(or “Don’t Know")

New Instance
Theorem Prover

Assertion { cO H}

Inductive bias made explicit
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Analytical Generalization Problem

« Given
— Instances X
— Target function (concept) c: X - H
— Hypotheses (i.e., hypothesis language aka hypothesis space) H
— Training examples D: positive and negative examples of the target function ¢
— Domain theory T for explaining examples
+ Domain Theories
— Expressed in formal language
« Propositional calculus
« First-order predicate calculus (EOPC)
— Set of assertions (e.g., well-formed formulae) for reasoning about domain
+ Expresses constraints over relations (predicates) within model
« Example: Ancestor (x, y) — Parent (x, z) J Ancestor (z, y).
« Determine
— Hypothesis h [JHsuch that h(x) = c(x) for all x 7D

Analytical Learning:

Algorithm

Learning with Perfect Domain Theories
— Explanation-based generalization: Prolog-EBG
— Given
« Target concept c: X — boolean
« Data set Dcontaining {x, c(x) Oboolean}
+ Domain theory T expressed in rules (assume FOPC here)
Algorithm Prolog-EBG (c, D, T)
— Learned-Rules — [
— FOR each positive example x not covered by Learned-Rules DO
« Explain: generate an explanation or proof Ein terms of T that x satisfies c(x)
« Analyze: Sufficient-Conditions — most general set of features of x sufficient
to satistfy ¢(x) according to E
« Refine: Learned-Rules — Learned-Rules + New-Horn-Clause, where
New-Horn-Clause = [c(x) — Sufficient-Conditions.]

— Such h are consistent with the training data and the domain theory T K : — RETURN Learned-Rules K :
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Terminology

* Supervised Learning
— Concept — function: observations to categories; so far, boolean-valued (+/-)
— Target (function) — true function  f
— Hypothesis - proposed function  h believed to be similarto

— Hypothesis space — space of all hypotheses that can be generated by the
learning system

— Example — tuples of the form < x, f(x)>

— Instance space (aka example space) — space of all possible examples

— Classifier — discrete-valued function whose range is a set of class labels
« Inductive Learning

— Inductive generalization — process of generating hypotheses  h OH that
describe cases not yet observed

— The inductive learning hypothesis — basis for inductive generalization
« Analytical Learning
— Domain theory T - set of assertions to  explain examples

Summary Points

Concept Learning as Search through H
— Hypothesis space H as a state space
— Learning: finding the correct hypothesis
Inductive Leaps Possible Only if Learner Is Biased
— Futility of learning without bias
— Strength of inductive bias: proportional to restrictions on hypotheses
Modeling Inductive Learners
— Equivalent inductive learning, deductive inference (theorem proving) problems
— Hypothesis language: syntactic restrictions (akarepresentation bias)
Views of Learning and Strategies
— Removing uncertainty (“data compression”)
— Role of knowledge
Integrated Inductive and Analytical Learning
— Using inductive learning to acquire domain theories for analytical learning
— Roles of integrated learning in KDD

— Analytical generalization - process of generating h consistent with D and TK,SU
:
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_ Explanation — proof in terms of _ Tthat x satisfies. c(x) « Next Time: Presentation on Analytical and Inductive Learning (Hsu) Ksu
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