

CIS 830: Advanced Topics in Artificial Intelligence

About Paper Reviews	
20 Papers	
 Must write at least 15 reviews 	
- Drop lowest 5	
Objectives	
- To help prepare for presentations and discussions (questions and	opinions)
 To introduce students to current research topics, problems, solution applications 	ons,
Guidelines	
 Original work, 1-2 pages 	
Do not just summarize	
Cite external sources properly	
- Critique	
Intended audience?	
 Key points: significance to a particular problem? 	
Flaws or ways you think the paper could be improved?	_ KSU
CIS 830: Advanced Topics in Artificial Intelligence	Kansas State Universi

	About Presentations
•	20 Presentations
	 Every registered student must give at least 1
	 If more than 20 registered, will assign duplicates (still should be original work)
	 First-come, first-served (sooner is better)
•	Papers for Presentations
	 Will be available at 14 Seaton Hall by Monday (first paper: online)
	 May present research project in addition / instead (contact instructor)
•	Guidelines
	 Original work, ~30 minutes
	Do not just summarize
	Cite external sources properly
	- Presentations
	Critique
	Don't just read a paper review: help the audience understand significance
	Be prepared for 20+ minutes of questions, discussion
cis	830: Advanced Topics in Artificial Intelligence Kansas State University Department of Computing and Information Sciences

Quick Review: Output of Learning Algorithms							
Classification Functions							
 Learning hidden functions: estimating ("fitting") parameters 							
 Concept learning (e.g., chair, face, game) 							
 Diagnosis, prognosis: medical, risk assessment, fraud, mechanical systems 							
Models							
 Map (for navigation) 							
 Distribution (query answering, aka QA) 							
 Language model (e.g., automaton/grammar) 							
• Skills							
 Playing games 							
– Planning							
 Reasoning (acquiring representation to use in reasoning) 							
Cluster Definitions for Pattern Recognition							
 Shapes of objects 							
 Functional or taxonomic definition 							
Many Problems Can Be Reduced to Classification							
CIS 830: Advanced Topics in Artificial Intelligence Repairment of Computing and Information Sciences							

Example: Inductive Learning Problem										
	$\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array} \qquad $			$\longrightarrow y = f(x_n x_2, x_3, x_4)$						
	Example	X 1	X2	X3	X_4	V				
	0	0	1	1	0	0				
	1	0	0	0	0	0				
	2	0	0	1	1	1				
	3	1	0	0	1	1				
	4	0	1	1	0	0				
	5	1	1	0	0	0				
	6	0	1	0	1	0				
• x; • Ou	\mathbf{t}_{i} , y: t, f: ($\mathbf{t}_{1} \times \mathbf{t}_{2} \times \mathbf{t}$ Ir learning functio	$_{3} \times t_{4}) \rightarrow t$ on: Vector	$(t_1 \times t_2 \times t_3)$	$_3 \times t_4 \times t$) –	\rightarrow (t ₁ × t ₂ × t	$t_3 \times t_4) \rightarrow t$	KSU			
CIS 830: Advanced Topics in Artificial Intelligence Ranaus State University Department of Computing and Information Sciences										

Inductive Bias • Fundamental Assumption: Inductive Learning Hypothesis - Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples • Sufficiently large, approximate well, unobserved • Statistical, probabilistic, computational interpretations and formalisms • How to Find This Hypothesis?

- Inductive concept learning as search through hypothesis space H
- Each point in $H \equiv$ subset of points in X (those labeled "+", or positive)
- Role of Inductive Bias
- Informal idea: preference for (i.e., restriction to) certain hypotheses by
- structural (syntactic) means

KSI

- Prior assumptions regarding target concept
- Basis for inductive generalization

CIS 830: Advanced Topics in Artificial Intelligence

Analytical Generalization Problem

- Given
 - Instances X
 - Target function (concept) $c: X \rightarrow H$
 - Hypotheses (i.e., hypothesis language aka hypothesis space) H
 - Training examples D: positive and negative examples of the target function c - <u>Domain</u> theory *T* for <u>explaining</u> examples
- **Domain Theories**
 - Expressed in formal language
 - Propositional calculus
 - First-order predicate calculus (FOPC)
- Set of assertions (e.g., well-formed formulae) for reasoning about domain
- Expresses constraints over relations (predicates) within model

(5)

- Example: Ancestor $(x, y) \leftarrow Parent (x, z) \land Ancestor (z, y)$.
- Determine
 - Hypothesis $h \in H$ such that h(x) = c(x) for all $x \in D$
- Such h are consistent with the training data and the domain theory T
- CIS 830: Advanced Topics in Artificial Intelligence

Analytical Learning: Algorithm Learning with Perfect Domain Theories Explanation-based generalization: Prolog-EBG Given • Target concept $c: X \rightarrow boolean$ • Data set *D* containing $\{x, c(x) \in boolean\}$ • Domain theory T expressed in rules (assume FOPC here) • Algorithm Prolog-EBG (c, D, T) – Learned-Rules ← Ø - FOR each positive example x not covered by Learned-Rules DO • Explain: generate an explanation or proof E in terms of T that x satisfies c(x)to satistfy c(x) according to E • Refine: Learned-Rules ← Learned-Rules + New-Horn-Clause, where New-Horn-Clause = $[c(x) \leftarrow Sufficient-Conditions.]$ **RETURN** Learned-Rules 15 CIS 830: Advanced Topics in Artificial Intelligence

Terminology

- Supervised Learning
 - Concept function: observations to categories; so far, boolean-valued (+/-)
 - Target (function) true function f
 - Hypothesis proposed function h believed to be similar to f
 - Hypothesis space space of all hypotheses that can be generated by the
 - rning system
 - Example tuples of the form $\langle x, f(x) \rangle$
 - Instance space (aka example space) space of all possible examples
- Classifier discrete-valued function whose range is a set of class labels
- Inductive Learning
 - Inductive generalization process of generating hypotheses $h \in H$ that describe cases not yet observed
- The inductive learning hypothesis basis for inductive generalization
- Analytical Learning
- Domain theory T- set of assertions to explain examples
- Analytical generalization process of generating h consistent with D and 1 6
- Explanation proof in terms of *T* that *x* satisfies *c*(*x*)
- CIS 830: Advanced Topics in Artificial Intelligence

Summary Points

- Concept Learning as Search through H
- Hypothesis space H as a state space
- Learning: finding the correct hypothesis
- Inductive Leaps Possible Only if Learner Is Biased
- Futility of learning without bias
- Strength of inductive bias: proportional to restrictions on hypotheses
- Modeling Inductive Learners
 - Equivalent inductive learning, deductive inference (theorem proving) problems

15

- Hypothesis language: syntactic restrictions (aka representation bias) Views of Learning and Strategies
- Removing uncertainty ("data compression")
- Role of knowledge
- Integrated Inductive and Analytical Learning Using inductive learning to acquire do in theories for analytical learning _
- Roles of integrated learning in KDD
- Next Time: Presentation on Analytical and Inductive Learning (Hsu)

CIS 830: Advanced Topics in Artificial Intelligence