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Presentation OutlinePresentation Outline

• Paper
– “Integrating Inductive Neural Network Learning and E xplanation-B ased L earning”

– Authors: S. B. Thrun and T. M. Mitchell

– Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93)

• Overview
– Combining analytical learning (specifically, EBL) and inductive learning

• Spectrum of domain theories (DTs)

• Goals: robustness, generality, tolerance for noisy data

– Explanation-Based Neural Network (EBNN) learning

• Knowledge representation: artificial neural networks (ANNs) as DTs

• Idea: track changes in goal state with respect to query state (bias derivation)

• Application to Decision Support Systems (DSS): Issues
– Neural networks: good substrate for integration of analytical, inductive learning?

– How are goals of robustness and generality achieved?  Noisy data tolerance?

– Key strengths: approximation for EBL; using domain theory for bias shift

– Key weakness: how to express prior DT, interpret explanations?
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Inductive Learning versusInductive Learning versus
Analytical LearningAnalytical Learning

• Inductive Learning
– Given

• Instances X

• Target function (concept) c: X → H

• Hypotheses (i.e., hypothesis language aka hypothesis space) H

• Training examples D: positive, negative examples of target function c

– Determine

• Hypothesis h ∈ H such that h(x) = c(x) for all x ∈ D

• Such h are consistent with training data

• Analytical Learning
– Given

• X, c: X → H, H, D = {<xi, c(xi)>}

• Domain theory T for explaining examples

– Determine

• h ∈ H such that h(x) = c(x) for all x ∈ D as can be proven deductively using T

• h is consistent with D and T
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• Analytical Learning in Problem-Solving Frameworks

– Target function: ANN or lazy representation (e.g., k-nearest neighbor)

– Instances: labeled episodes (“will doing a1 in s1 lead to sn ∈ Goals?”)

– Domain theory: expressed as sequence of ANNs

– Explanations

• Post-facto prediction of observed episode using domain knowledge

• Shows how achieving final goal depended on features of observed initial state

• Inductive Learning using ANNs

– Purpose: to acquire DT (components of explanation)

– Each multi-layer perceptron (MLP) trained

• Input: features (attributes) of state si

• Target: features of state si + 1 = Do (ai - 1, si - 1)

• How do weights capture domain theory?

– Instances: state/action-to-state (predictive) mappings

– Objective: produce sequence of mappings from s1 to goal feature of sn
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• Generalizing over ANN Representations
– Prediction

• Target at each stage: to identify features of next state

• Predictor: any inductive learner (H, L) capable of expressing this mapping

• Sequence (chain) of predictions forms explanation

– Pattern matching: unify predicted features with state

• Ways to Integrate (Section 3)
– Analytical, then inductive (e.g., EBNN)

• EBG: prove that “ x is a c(x)” and generalize proof

• Apply inductive generalization (e.g., version spaces) to proofs, examples,
attributes

– Inductive, then analytical

• Find empirical (statistical) regularities (predicates) by simple induction

• Explain, generalize associations (NB: idea recurs in uncertain reasoning)

– Interleaved inductive and analytical processes

• Explain D, not xi; inductively complete explanations, abstract over DT

• EBL with systematic or opportunistic induction steps to improve DT
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Analytical and Inductive Learning:Analytical and Inductive Learning:
Principles of Integration in Decision SupportPrinciples of Integration in Decision Support
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• Symbolic EBL Domain Theory
– Stereotypically, knowledge base of arbitrary Horn clauses

• Atomic inference step: resolution (sequent rule: P ∨ L, L → R  | P ∨ R)

• Inductive learning: rule acquisition (FOIL, inductive logic programming, etc.)

– Due to inferential completeness (and decidability limitations), usually restricted

– Atomic (deductive) learning step: variabilization, pruning proof tree (see Section
21.2, Russell and Norvig)

• EBNN Domain Theory
– All “inference rules” expressed as ANNs

• Atomic inference step: feeding example forward

• Corresponds to many floating-point operations

• Inductive learning: ANN training (e.g., backprop)

– Atomic (deductive) learning step: next

• Application
– Direct application: classification, prediction (in both cases)

– Indirect application: control, planning, design, other optimization
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• Goals (Section 1)
– Robustness – ability to use different “strength” DTs, performing:

• At least as well as inductive system even in “worst” case of no DT

• Comparably to EBG with perfect DT

• With graceful degradation in between

– Generality – ability to incorporate DTs of different levels of completeness

– Noise tolerance – able to learn from D with error in instances ( xi), labels ( c(xi))

• Intuitive Idea (Section 2.1-2.2)
– Given: sequence of descriptors (of state of problem-solving world and actions)

– Train ANNs to predict next state

– Use them to form explanation chain; analyze chain to train “top level” model

• Relation to KDD
– Key contribution: method for hybrid learning of predictor functions for DSS

– Possible direct application: synopsis

• Wrappers for KDD performance optimization (data cleansing, queries)

• Stay (around Lecture 30 or sooner if you want project topics…)

Explanation-Based Neural Network (EBNN)Explanation-Based Neural Network (EBNN)
MethodologyMethodology
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EBNN Learning AlgorithmEBNN Learning Algorithm

• Given: Sequence of State-Action Pairs

• Methodology (Section 2.1-2.2)

– Train ANNs to predict next state

• Represent state descriptors as feature (attribute) vectors in training examples

• Store trained ANN(s) as units of DT

– Step 1 (Explain): use DT to form explanation chain

• Given: “known” sequence of action, state pairs < a1, s1>, <a2, s2>, …, <an, sn>

• Use DT to predict next state (post-facto) in each case (single or multiple-step
lookahead)

– Step 2 (Analyze): compute slope of target wrt initial state, action

• Take derivatives of ANN weights in chain (recursively, using chain rule)

• Rationale (Figure 3): f ’(x) helps in interpolating f(x)

– Step 3 (Refine): use derivative to fit top-level curve

• Partial derivative: ∂ sn.is-goal / ∂a1 ∂s1

• Top-level curve is ANN or other model that maps <a1, s1> to {+, –}
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Robustness of EBNNRobustness of EBNN

• Problem (Section 2.3)
– What if some ANNs (for DT, not for overall target) are wrong?

– Domain theory could be arbitrarily bad (inaccurate) over desired inference space
(problem-solving world)!

– Want to give proportionately less weight to poor slopes

– But how to guess generalization quality over slopes?

• Solution Approach (Section 2.3)
– Idea: assign credit (loss) in proportion to accuracy (error) on predictions

– Assumption (LOB*): prediction errors measure slope errors

• Ramifications: can propagate credit back through explanation chain (n-step
estimate), weight analytical, inductive components accordingly

• Open question: For what inducers (inductive learning models, algorithms)
does LOB* hold?

• Experimental Goals (Section 2.4)
– Determine role of knowledge quantitatively (measure improvement due to DT)

– Test quality of lazy (nearest-neighbor) generalization
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Experimental MethodExperimental Method

• Experimental Results (Section 2.4)

– Improvement using DT (Figure 5): pre-trained ANNs improve average and worst-
case performance of learned control function

– Improvement in proportion to DT strength (Figure 6): graphs showing gradual
improvement as DT-learning ANNs get more training examples

– Possible experimental issues

• Highly local instance-based generalization: k-NN with k = 3

• Small sample: average of 3 sets (but large D in each case)

• Depends on how D was “randomly generated”

– Visualization issue: would have helped to have graph of Figure 6 with one axis
labeled “examples”

• Claims (Section 1, 4)

– EBNN is robust: n-step accuracy estimate weights ANN predictions according to
cumulative credit (product of prediction accuracy “down the chain”), improving
tolerance for poor DTs

– EBNN is general: can incrementally train ANNs to get partial DT

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

Using Integrated (Multi-Strategy) LearningUsing Integrated (Multi-Strategy) Learning
for Decision Supportfor Decision Support

• Multi-Strategy Learning

– Also known as integrated, hybrid learning

– Methods for combining multiple algorithms, hypotheses, knowledge/data sources

• Role of Analytical-Inductive Multi-Strategy Learning in Problem Solving
– “Differential” method: compatible with d ynamic p rogramming (DP) methods?

• Q-learning [Watkins, 1989]
• TD(λ) [Sutton, 1988]

– Other numerical learning (“parametric”, “model-theoretic”) learning models

• Hidden Markov Models (HMMs), Dynamic Bayesian Networks (DBNs)

• See Lectures 17-19, CIS 798 (Fall 1999), especially 19

• ADN approach more suited to analytical learning?

– Methods for incorporating knowledge: stay tuned (next presentation)

• Applicability to Decision Support Systems (DSS) and KDD

– Important way to apply predictions (e.g., output of business simulation) to DSS

– Q: Can we use this for KDD directly?  
A: Perhaps, if sequence of states of data model can be explained
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Summary PointsSummary Points

• Content Critique
– Key contribution: simple, direct integration of inductive ANN learning with EBL

• Significance to KDD: good way to apply predictive models in decision support
• Applications: policy (control) optimization; DTs, explanations for wrappers?

– Strengths
• Generalizable approach (significant for RL, other learning-to-predict inducers)
• Significant experiments: measure generalization quality, graceful degradation

– Weaknesses, tradeoffs, and questionable issues
• EBNN DT lacks some advantages (semantic clarity, etc.) of symbolic EBL DT
• Other numerical learning models (HMMs, DBNs) may be more suited to EBG

• Presentation Critique
– Audience: AI (learning, planning), ANN, applied logic researchers
– Positive and exemplary points

• Clear introduction of DT “spectrum” and treatment of integrative approaches
• Good, abstract examples illustrating role of inductive ANN learning in EBNN

– Negative points and possible improvements
• Insufficient description of analytical ANN hypothesis representations
• Semantics: still not clear how to interpret ANN as DT, explanations


