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Inductive Learning versus

Analytical Learning

* Inductive Learning
— Given
 Instances X
« Target function (concept) ¢: X - H
* Hypotheses (i.e., hypothesis language aka hypothesis space) H
« Training examples D: positive, negative examples of target function ¢
— Determine
+ Hypothesis h O Hsuch that h(x) = c¢(x) for all x 0 D
* Such hare consistent with training data
* Analytical Learning
— Given
* X, ¢ X » H, H D={<x; c(x)>}
+ Domain theory T for explaining examples
— Determine
+ h O Hsuch that h(x) = c(x) for all x 0 D as can be proven deductively using T
« his consistent with Dand T s“
i
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Analytical and Inductive Learning:

Presentation Outline

Paper
— “Integrating Inductive Neural Network Learning and E  _xplanation-B_ased L earning”
— Authors: S. B. Thrun and T. M. Mitchell
— Thirteenth [nternational Joint Conference on Atrtificial Intelligence (IJCAI-93)
Overview

— Combining analytical learning (specifically, EBL) and inductive learning
+ Spectrum of domain theories (DTs)
+ Goals: robustness, generality, tolerance for noisy data
— Explanation-Based Neural Network (EBNN) learning
+ Knowledge representation: artificial neural networks (ANNs) as DTs
« Idea: track changes in goal state with respect to query state (bias derivation)
« Application to Decision Support Systems (DSS): Issues
— Neural networks: good substrate for integration of analytical, inductive learning?
— How are goals of robustness and generality achieved? Noisy data tolerance?
— Key strengths: approximation for EBL; using domain theory for bias shift

— Key weakness: how to express prior DT, interpret explanations? K f
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Analytical Learning and Inductive Learning:

Integration for Problem Solving using ANNs

Analytical Learning in Problem-Solving Frameworks

— Target function: ANN or lazy representation (e.g., k-nearest neighbor)
— Instances: labeled episodes (‘will doing a;in s;lead to s, Goals?")
— Domain theory: expressed as sequence of ANNs

— Explanations

« Post-facto prediction of observed episode using domain knowledge
+ Shows how achieving final goal depended on features of observed initial state
* Inductive Learning using ANNs
— Purpose: to acquire DT (components of explanation) output Layer
— Each multi-layer perceptron (MLP) trained

- Hidden L.
« Input: features (attributes) of state s; aden ayer
« Target: features of state s;,, = Do (.4, S;_,) a

Input Layer
* How do weights capture domain theory?

— Instances: state/action-to-state (predictive) mappings
— Objective: produce sequence of mappings from s, to goal feature of s, KS“
i
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Domain Theories

Principles of Integration in Decision Support

« Generalizing over ANN Representations
— Prediction
« Target at each stage: to identify features of next state
« Predictor: any inductive learner (H, L) capable of expressing this mapping
+ Sequence (chain) of predictions forms explanation
— Pattern matching: unify predicted features with state
* Ways to Integrate (Section 3)
— Analytical, then inductive (e.g., EBNN)
+ EBG: prove that “ xis a c(x)" and generalize proof

« Apply inductive generalization (e.g., version spaces) to proofs, examples,
attributes

— Inductive, then analytical

Action

Predictor

« Find empirical (statistical) regularities (predicates) by simple induction
« Explain, generalize associations (NB: idea recurs in uncertain reasoning)
— Interleaved inductive and analytical processes
« Explain D, not x;; inductively complete explanations, abstract over DT h
+ EBL with systematic or opportunistic induction steps to improve DT K i i
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« Symbolic EBL Domain Theory
— Stereotypically, knowledge base of arbitrary Horn clauses
« Atomic inference step: resolution (sequent rule: POL, L - R |0 POR)
+ Inductive learning: rule acquisition (FOIL, inductive logic programming, etc.)
— Due to inferential completeness (and decidability limitations), usually restricted

— Atomic (deductive) learning step: variabilization, pruning proof tree (see Section
21.2, Russell and Norvig)

« EBNN Domain Theory
— Al “inference rules” expressed as ANNs
« Atomic inference step: feeding example forward

Output Layer

+ Inductive learning: ANN training (e.g., backprop) U\
— Atomic (deductive) learning step: next Input Layer
* Application

— Direct application: classification, prediction (in both cases)
— Indirect application: control, planning, design, other optimization
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Explanation-Based Neural Network (EBNN)

Methodology

Goals (Section 1)
— Robustness — ability to use different “strength” DTs, performing:
+ Atleast as well as inductive system even in “worst” case of no DT
+ Comparably to EBG with perfect DT
« With graceful degradation in between
— Generality — ability to incorporate DTs of different levels of completeness
— Noise tolerance — able to learn from D with error in instances ( x)), labels ( c(x)
Intuitive Idea (Section 2.1-2.2)

— Given: sequence of descriptors (of state of problem-solving world and actions)
— Train ANNSs to predict next state

— Use them to form explanation chain; analyze chain to train “top level” model
+ Relation to KDD
— Key contribution: method for hybrid learning of predictor functions for DSS
— Possible direct application: synopsis
+ Wrappers for KDD performance optimization (data cleansing, queries)
+ Stay (around Lecture 30 or sooner if you want project topics...) K f
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Robustness of EBNN

Problem (Section 2.3)

What if some ANNs (for DT, not for overall target) are wrong?

Domain theory could be arbitrarily bad (inaccurate) over desired inference space
(problem-solving world)!

Want to give proportionately less weight to poor slopes
But how to guess generalization quality over slopes?
Solution Approach (Section 2.3)

Idea: assign credit (loss) in proportion to accuracy (error) on predictions
— Assumption (LOB*): prediction errors measure slope errors
+ Ramifications: can propagate credit back through explanation chain (n-step
estimate), weight analytical, inductive components accordingly
+ Open question: For what inducers (inductive learning models, algorithms)
does LOB* hold?
« Experimental Goals (Section 2.4)

— Determine role of knowledge quantitatively (measure improvement due to DT)
— Test quality of lazy (nearest-neighbor) generalization
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EBNN Learning Algorithm

* Given: Sequence of State-Action Pairs
« Methodology (Section 2.1-2.2)
— Train ANNs to predict next state
+ Represent state descriptors as feature (attribute) vectors in training examples
« Store trained ANN(s) as units of DT
— Step 1 (Explain): use DT to form explanation chain
« Given: “known” sequence of action, state pairs < a,, $,>, <@, S,>, ..., <&, S;>

+ Use DT to predict next state (post-facto) in each case (single or multiple-step
lookahead)

— Step 2 (Analyze): compute slope of target wrt initial state, action
« Take derivatives of ANN weights in chain (recursively, using chain rule)
+ Rationale (Figure 3): f’(x) helps in interpolating ~ f(x)

— Step 3 (Refine): use derivative to fit top-level curve
« Partial derivative: 9 s,.is-goal / 0a, ds,
« Top-level curve is ANN or other model that maps <a,, s,>to {+, -}
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Experimental Method

« Experimental Results (Section 2.4)

Improvement using DT (Figure 5): pre-trained ANNs improve average and worst-
case performance of learned control function

Improvement in proportion to DT strength (Figure 6): graphs showing gradual
improvement as DT-learning ANNs get more training examples

— Possible experimental issues

« Highly local instance-based generalization: k-NN with k=3
+ Small sample: average of 3 sets (but large Din each case)
+ Depends on how Dwas “randomly generated”

— Visualization issue: would have helped to have graph of Figure 6 with one axis
labeled “examples”
« Claims (Section 1, 4)

EBNN is robust: n-step accuracy estimate weights ANN predictions according to
cumulative credit (product of prediction accuracy “down the chain”), improving
tolerance for poor DTs

i
— EBNN is general: can incrementally train ANNs to get partial DT Ksm

Using Integrated (Multi-Strategy) Learning
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for Decision Support

* Multi-Strategy Learning

— Also known as integrated, hybrid learning
— Methods for combining multiple algorithms, hypotheses, knowledge/data sources
Role of Analytical-Inductive Multi-Strategy Learning in Problem Solving
— “Differential” method: compatible with d
+ Q-learning [Watkins, 1989]
+ TD(A) [Sutton, 1988]

_ynamic p_rogramming (DP) methods?

— Other numerical learning (“parametric”, “model-theoretic”) learning models
+ Hidden Markov Models (HMMs), Dynamic Bayesian Networks (DBNs)
* See Lectures 17-19, CIS 798 (Fall 1999), especially 19
+ ADN approach more suited to analytical learning?

Methods for incorporating knowledge: stay tuned (next presentation)

Applicability to Decision Support Systems (DSS) and KDD

— Important way to apply predictions (e.g., output of business simulation) to DSS
— Q: Can we use this for KDD directly?

g |
A: Perhaps, if sequence of states of data model can be explained K o i

Summary Points

« Content Critique

Key contribution: simple, direct integration of inductive ANN learning with EBL
« Significance to KDD: good way to apply predictive models in decision support
« Applications: policy (control) optimization; DTs, explanations for wrappers?
— Strengths
+ Generalizable approach (significant for RL, other learning-to-predict inducers)

+ Significant experiments: measure generalization quality, graceful degradation
— Weaknesses, tradeoffs, and questionable issues

+ EBNN DT lacks some advantages (semantic clarity, etc.) of symbolic EBL DT
+ Other numerical learning models (HMMs, DBNs) may be more suited to EBG
* Presentation Critique

— Audience: Al (learning, planning), ANN, applied logic researchers
— Positive and exemplary points

« Clear introduction of DT “spectrum” and treatment of integrative approaches

+ Good, abstract examples illustrating role of inductive ANN learning in EBNN
— Negative points and possible improvements

« Insufficient description of analytical ANN hypothesis representations

+ Semantics: still not clear how to interpret ANN as DT, explanations K ; i
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