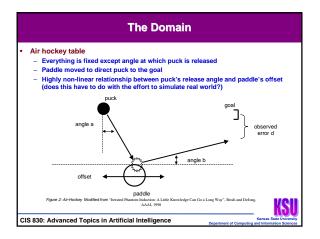
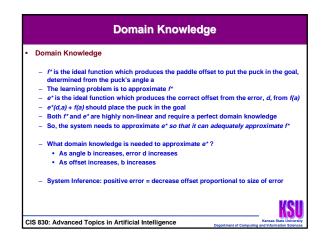
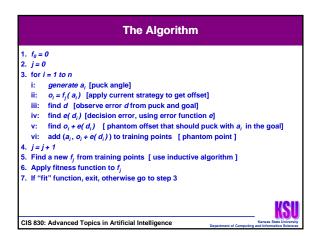


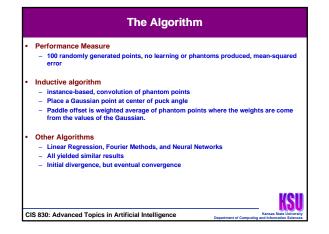
Presentation Overview Paper "Iterated Phantom Induction: A Little Knowledge Can Go a Long Way" Authors: Mark Brodie and Gerald DeJong, Beckman Institute, University of Ilinois at Urbana-Champaign Overview Learning in failure domains by using phantom induction Goals: don't need to rely on positive examples or as many examples as needed by conventional learning methods. Phantom Induction <u>Knowledge representation</u>: Collection of points manipulated by Convolution, Linear regression, Fourier methods or Neural networks Idea: Perturb failures to be successes, train decision function with those "phantom" successes Issues Can phantom points be used to learn effectively? Key strengths: Robust learning method, convergence seems inevitable Key weakness: Domain knowledge for other applications? KS CIS 830: Advanced Topics in Artificial Intelligence

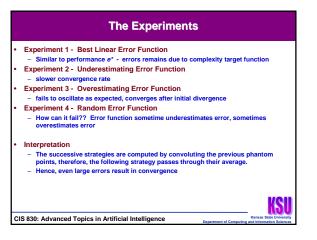
Outline Learning in Failure Domains An example - basketball "bank-shot"
 Conventional methods versus Phantom Induction Process figure from paper The Domain Air-hockey environm Domain Knowledge - Incorporating prior knowledge to explain world-events Using prior knowledge to direct learning The Algorithm - The Iterated Phantom Induction algorithm Fitness measure, inductive algorithm, and met Interpretation - Results Interpretation graphic - explaining a phenomenon Summary KSI CIS 830: Advanced Topics in Artificial Intelligence

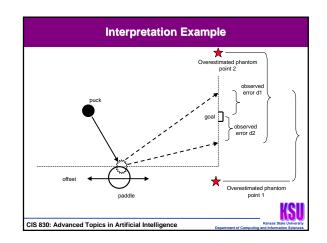





Learning in Failure Domains


- Conventional learning methods
 - Using conventional learning methods in failure domains can require many, many examples before a good approximation to the target function is learned
 - Failure domains may require prior domain knowledge, something which may be hard to encode in conventional methods, like neural networks and genetic algorithms
- Phantom Decision method
 - Propose a problem, generate a solution, observe the solution, explain the solution and develop a "fix". (assumes the solution resulted in a failure)
 - The "fix" added to the previous solution creates a "phantom" solution, which
 - should lead the original problem to the goal Domain knowledge is used to explain the solution's results, and only perfect domain knowledge will lead to a perfect phantom solution.
 - After collecting phantom points, an INDUCTIVE algorithm is used to develop a
 - new decision strategy
 - Another problem is proposed and a new solution is generated, observed, phantom decision found and decision strategy is again updated. **IS**


CIS 830: Advanced Topics in Artificial Intelligence



Summary Points
Content Critique
- Key contribution:
 "iterated phantom induction converges quickly to a good decision strategy."
 Straight-forward learning method which models real world.
- Strengths
 Robust - when doesn't this thing diverge!
 Interesting possibilities for applications (failure domains)
- Weaknesses
Domain knowledge is crucial. Unclear on how to determine sufficient domain knowledge given a problem
No comparison to other learning methods
Presentation Critique
- Audience: Artificial intelligence enthusiasts - robot, game, medical applications
- Positive points
 Good introduction, level of abstraction, and explanations
Understandable examples and results
- Negative points
Some places could use more detail - inductive algorithm, fitness measure

CIS 830: Advanced Topics in Artificial Intelligence Department of Computing and Information Sciences