Lecture 7

Analytical Learning Discussion (3 of 4): Learning and Knowledge

Wednesday, February 2, 2000

William H. Hsu

Department of Computing and Information Sciences, KSU

http://www.cs.ksu.edu/~hhsu

Readings: Chown and Distefano

Lecture Outline

- Paper
 - Paper: “A Divide-and-Conquer Approach to Learning from Prior Knowledge”
 - Authors: E. Chown and T. G. Dietterich

- Overview
 - Using prior knowledge as an aid to learning
 - Model calibration problem
 - Role of prior knowledge in analytical and inductive learning
 - Hierarchical system: MAPSS
 - Analytical learning to decompose prediction learning problem sequentially
 - Idea: choose hypothesis language (parameters), examples for subproblems

- Topics to Discuss
 - How to choose prediction target(s)?
 - Local versus global optimization: how can knowledge make difference?
 - How does hierarchical decomposition implement bias shift (search for H)?
 - Empirical improvements using prior knowledge? Ramifications for KDD?

- Next Paper: Towell, Shavlik, and Noordewier, 1990 (KBANN)

Background AI and Machine Learning Material

- Parameter Estimation
 - Russell and Norvig
 - Chapter 18: inductive learning (version spaces, decision trees)
 - Chapter 21: learning with prior knowledge
 - Mitchell
 - Chapter 2: inductive learning (basics, inductive bias, version spaces)
 - Chapter 6: Bayesian learning

- Topics to Discuss
 - Muddiest points
 - Inductive learning: learning as search (in H)
 - Data preprocessing for KDD
 - Model calibration: parameter estimation (inductive learning application)
 - Local versus global optimization
 - Example questions to ask when writing reviews and presentations
 - How is knowledge represented?
 - How is prior knowledge applied to improve learning?

Key Strengths of MAPSS Learning Technique

- Strengths
 - Prior knowledge led to training convergence
 - Previously, could only calibrate 12 of 20 parameters of model (Section 2.2)
 - Prior knowledge made it possible to calibrate rest (Section 3.3)
 - Idea: analysis of code to produce prior knowledge
 - Knowledge-based software engineering (KSEE) concept
 - Implement classification model as program
 - Use partial evaluation of program to find α for which few α_i are unknown
 - Idea: bootstrapped (intermediate inductive, analytical) learning
 - Training: “short runs” of global optimization, interleaved with prefiltering of D
 - Produces filter models and one example per model (batch of 40)
 - Idea: decomposing problems into locally relevant sets of parameters
 - Scalability (through divide-and-conquer): relative to i_1 (i_2 attributes)
 - Partitioning problem by partitioning attributes [Hsu, Ray, and Wilkins, 2000]
 - Applications to KDD
 - Can express many KBs as programs: simulators, classification systems
 - Methods for estimating (e.g., EM) missing values in data
 - Breaking problem into more tractable pieces (more in Paper #7)

Key Weaknesses of MAPSS Learning Technique

- Weaknesses
 - Still took $3\times$ months (even using prior knowledge!)
 - 710K evaluations took 6 CPU weeks (SPARC 2)
 - 1.5M evaluations in final version
 - Generality not well established
 - Under what conditions can we express prediction rules in the imperative programming language used?
 - Empirical improvements using prior knowledge? (better convergence in training)
 - Ramifications for general-case learning applications (e.g., KDD?)
 - Typos in section 3.2?

- Unclear Points
 - What form of partial evaluation is appropriate for prediction task?
 - How to choose the right architecture of committee machine? (e.g., filter modules)
 - Can technique scale up calibration of broad class of scientific models?
 - How to use prior relevance knowledge in KDD?
 - Acquisition (automatic relevance determination, aka ARD) – “20 important $\alpha_i”
 - Automatic application (stay tuned...)
 - How to apply other forms of prior knowledge (constraints, etc.)?

References: [Fu and Buchanan, 1985; Jordan et al., 1991; Ronco et al., 1995]
Data Gathering Algorithm

- **Committee Machine**
 - See
 - Chapter 7, Haykin
 - Chapter 7, Mitchell
 - Lectures 21-22, CIS794 [http://rings.cis.ksu.edu/Courses/Fall-1999/CIS794]
 - Idea
 - Use experts to preprocess (filter) D or combine predictions
 - In this case, 40 experts prefilter D to get n = 40 examples; need 32-36 to agree

- **Intuitive Idea**
 - Want to use prior knowledge (in form of imperative program) to speed up learning
 - Analyze program: perform partial evaluation using current calibration
 - Prefilter data: find “good operating regions” (classification paths with “few enough” unknown parameters)
 - Algorithm: technical details
 - Need to reduce sensitivity (instability): 1 example per model (of 40)
 - Accumulate 40 “good” training examples

Scaling Up KDD Using Prior Knowledge

- **MAPSS Problem**
 - m ≤ (M ≤ 40) considered “small” for this problem
 - Not clear how many candidates, but only 5 filter passes suffices
 - Note: Basic: Takes many experts (32-36 out of 40) to get good “consensus”!
 - m ≤ 65 attributes: considered “medium” for this problem (given n)
 - 5 prediction targets
 - 3 leaf area index (LAI) predictions, 1 runoff prediction (numerical)
 - 1 biome classification (74 possible values)

- **Prior Knowledge: Lessons Learned**
 - Previous approaches
 - KBANN: backpropagation in feedforward ANNs using “compiled” constraints
 - FOIL: variant of FOIL (decision trees using first-order logic predicates)
 - Others: qualitative simulation, inductive (logic programming (ILP), etc.
 - Problem: lack of scalability
 - Computational limitations of inference (semidecidability of resolution)
 - Intractability of even very restricted learning approaches

Course Project: Overview

- **3 Components**
 - Project proposal (20%, 50 points)
 - Implementation (50%, 125 points)
 - Final report (30%, 75 points)

- **Project Proposal (Due 02/14/2000)**
 - 1-3-page description of project topic, plan
 - Guidelines: next (and suggested topics, tools on course web page)

- **Implementation**
 - Students choice of programming language
 - Guidelines: Friday (and on course web page)

- **Final Report**
 - 4-6 page report on implementation, experimental results, interpretation
 - Peer-reviewed (does not determine grade)
 - Reviews graded (short report worth 60 points, reviews worth 15 points)

Course Project: Proposal Guidelines

- **Report Contents (1-3 Pages)**
 - Scope: What kind of data will you use?
 - Problem: What problem are you addressing?
 - Methodology: How are you addressing the problem?

- **Scope**
 - What data sets will you use?
 - What characteristics of the data are you trying to deal with / exploit?

- **Problem**
 - Objective: What KDD problem are you trying to solve?
 - Performance element: What is the problem-solving component of your KDD system?
 - Evaluation: How will you measure success?

- **Methodology**
 - Implementation: What will you implement? (general statement, not specification)
 - Tools: What programming languages and KDD tools will you use?

Terminology

- **Inductive Learning**
 - Prior knowledge
 - *Declarative:* expressed in assertions (e.g., FOCL)
 - *Procedural:* expressed in imperative statements
 - *Functional:* expressed as functions (e.g., higher-order) and relations
 - *Taxonomic:* expressed as classification hierarchy
 - *Inductive bias*
 - *Representation bias:* expressed by R hypothesis space (language)
 - *Preference bias:* expressed by L, learning algorithm
 - *Change of representation:* transformation from N into M (form of bias shift)
 - *Bias shift:* change in inductive bias (representation or preferences)

- **Divide-and-Conquer Approaches to Learning**
 - Hierarchical learning system: decompose problem according to attributes, examples, etc.
 - Committee machine: combine outputs of multiple expert “modules”

Summary Points

- **Key Points Covered**
 - Using prior (declarative) knowledge as an aid to learning
 - Hierarchical learning system: MAPSS
 - *Bias shift* through systematic problem decomposition
 - Idea: choose hypothesis language (parameters), examples for subproblems

- **Discussion Topics**
 - Local versus global optimization: knowledge as bias (control of search over H)
 - Scalable KDD: hierarchical decomposition using relevance knowledge
 - Prior knowledge in form of classification program
 - Developing relevance knowledge using partial evaluation
 - Choosing prediction targets in KDD: general filtering problem

- **Next Paper**
 - Towell, Shavlik, and Noordewier, 1990
 - “Knowledge-Based Artificial Neural Networks (KBANN):” constraints in feedforward ANN learning