Analytical Learning Discussion (4 of 4): Refinement of Approximate Domain Theories by Knowledge-Based Neural Networks

Friday, February 4, 2000
Lijun Wang
Department of Computing and Information Sciences, KSU

Presentation Outline
- **Paper**
 - "Refinement of Approximate Domain Theories by Knowledge-Based Neural Networks"
 - Authors: Geoffrey G. Towell, Jude W. Shavlik, Michiel O. Noordewier
 - Appears in the Proceedings of the Eighth National Conference on AI
- **Overview**
 - Use Horn clauses domain theory to create an equivalent artificial neural network (ANN)
 - KBANN algorithm
 - Empirical testing in molecular biology
 - Extension Research of KBANN
- **Application to Knowledge Discovery in Database: Issues**
 - Combined inductive and analytical learning
 - Key strengths: better than random initial weight? Lead to better generalization accuracy for the final hypothesis?
 - Key weakness: restricted to non-recursive, prepositional domain theories

KBANN Algorithm
- The KBANN assumes a domain theory can be represented by an ANN
 - **Definition of ANN**
 - An artificial neural network is composed of a number of nodes, or units, connected by links. Each link has a numeric weight associated with it. Learning takes place by updating the weights.
 - **Given**
 - A set of training examples
 - A domain theory consisting of nonrecursive, prepositional Horn clauses
 - **Determine**
 - An artificial neural network that fits the training examples, biased by the domain theory
 - the knowledge base is translated into ANN

KBANN Algorithm Examples
- An Illustrative Example (Translation of a Knowledge Base into an ANN)

KBANN Algorithm (continue)
- Translation of rules
 - sets weights on links and biases of units so that units have significant activation only when the corresponding deduction could be made using the domain knowledge
 - **Explanations**
 - for each mandatory antecedent, assign a weight: \(w \)
 - for each prohibitory antecedent, assign a weight: \(-w\)
 - bias on the unit: \(n \times w + \beta \) for conjunction \(w + \beta \) for disjunction
- **Algorithm specification**
 - overview
 - Translate rules to set initial network structure
 - Add units not specified by translation
 - Add links not specified by translation
 - Perturb the network by adding near zero random numbers to all link weights and biases

KBANN Algorithm (continue)
- Cup learning task (from Machine Learning by Tom Mitchell)
 - Domain theory
 - **Stable**, **Light**, **OpenVessel**
 - **Stable** --- **Bottleneck** --- **Stable**
 - **Light** --- **Graspable** --- **NonHandable**
 - **OpenVessel** --- **HasConcavity** --- **ConcavityPointsUp**
 - Neural Network
 - **Stable**, **Light**, **OpenVessel**
 - **Stable** --- **Bottleneck** --- **Stable**
 - **Light** --- **Graspable** --- **NonHandable**
 - **OpenVessel** --- **HasConcavity** --- **ConcavityPointsUp**
 - Training Examples
Experimenting with KBANN
• Molecular genetics experiment using KBANN
 - Task
 • learn to recognize DNA segments called promoter regions which influence gene activity
 - Domain theory
 • a promoter involves two subcategories: a contact and a conformation region
 • contact involves two regions
 • rules defining region characteristics
 • example:
 conformation:-@45 "axxx"
 - ANN

Experimenting with KBANN (continue)
• Molecular genetics problem using KBANN
 - procedure
 • 53 positive and 53 negative training examples
 • N = 106
 • “leave-one-out” method, on each iteration KBANN was trained using 105 of the 106 examples and tested on the remaining example
 - results

<table>
<thead>
<tr>
<th>System</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBANN</td>
<td>4/106</td>
</tr>
<tr>
<td>Standard Backpropagation</td>
<td>8/106</td>
</tr>
<tr>
<td>O’Neill</td>
<td>12/106</td>
</tr>
<tr>
<td>Nearest Neighbor</td>
<td>13/106</td>
</tr>
<tr>
<td>ID3</td>
<td>19/106</td>
</tr>
</tbody>
</table>

Related Work
• Problems specific to Neural Networks
 - Topology determination (restricted to a single layer of hidden units or random setting of link weights)
 - Integration of existing information into the network (how to use background information or improve incorrect domain theories in ANNs)

• KBANN solutions
 - Connect the inputs of network units to the attributes tested by the clause antecedents, assign a weight of w to the unit for each positive antecedent or -w for each negative antecedent
 - Initialize the hypothesis to perfectly fit the domain theory, then inductively refine the initial hypothesis as needed to fit the training data

Summary Points
• Content Critique
 - Key contribution:
 • Analytically creates a network equivalent to the given domain theory
 • Inductively refines the initial hypothesis to better fit the training data
 - In doing so, it modifies the network weights to overcome the inconsistencies between the domain theory and the observed data.

 - Strengths
 • Generalize more accurately given an approximately correct domain theory
 • Outperform other purely inductive methods when data is scarce
 • Domain theory used in KBANN indicates important features to an example classification
 • Derived features are also specified through deduction, therefore reducing the complexity of an ANN’s final decision

 - Weaknesses
 • Is restricted to non-recursive, propositional (i.e., variable-free) Horn clauses
 • May be misled given highly inaccurate domain theory
 • Is problematic to extract information from ANNs after learning because some weight settings have no direct Horn clause analog.
 • Blackbox method, which provide good results without explanation

Summary Points (continue)
• Presentation Critique
 - Audience: AI (learning, planning), ANN, applied logic researchers
 - Positive and exemplary points
 • Clear example illustrating the translation of knowledge base into an ANN
 • Good experimental results over other inductive learning algorithm
 - Negative points and possible improvements
 • We understand some basic ideas of ANN translation, but still may not be able to do it

Questions, Comments