

Lecture Outline

CIS 830: Advanced Topics in Artificial Intelligence

•	References: Chapters 2-3, Mitchell	
•	Suggested Exercises: 2.2, 2.3, 2.4, 2.6	
•	Review: Learning from Examples	
	 (Supervised) concept learning framework 	
	 Basic inductive learning algorithms 	
•	General-to-Specific Ordering over Hypotheses	
	 Version space: partially-ordered set (poset) formalism 	
	 Candidate elimination algorithm 	
	- Inductive learning	
•	Decision Trees	
	 Quick tutorial / review: Lectures 4-5, CIS 798, Fall 1999 	
	 See: <u>http://ringil.cis.ksu.edu/Courses/Fall-1999/CIS798/Lectures</u> 	
•	Relation to Analytical Learning	
•	Next Class: Introduction to Artificial Neural Networks	VOII

151

		A Lea	arning	Proble	m		
	x ₁ x ₂ x ₃ x ₄	→ → Unk → Fun	nown _ ction	,	► y = f (x ₁	, x ₂ , x ₃ , x ₄)	
	Example	X 1	X ₂	X 3	x_4	у	
	0	0	1	1	0	0	
	1	0	0	0	0	0	
	2	0	0	1	1	1	
	3	1	0	0	1	1	
	4	0	1	1	0	0	
	5	1	1	0	0	0	
	6	0	1	0	1	0	
 x_i: t_i, y: Our lea 	t, f: $(t_1 \times t_2 \times t_3)$ rning functio	$_{3} \times t_{4}) \rightarrow t$ n: Vector	$(t_1 \times t_2 \times t_3)$	$x \times t_4 \times t$) \rightarrow	$(\mathbf{t}_1 \times \mathbf{t}_2 \times \mathbf{t}_3)$	$_3 \times t_4) \rightarrow t$	KSII
CIS 830: Adv	anced Topics i	n Artificial	Intelligenc	e	Department of	Kansa	s State University

	F L	lypot Jnres	hesi: strict	s Spa ed Ca	ace: ase		
 A → B = H⁴ → H = Complete Need to After 7 e 	$ B ^{ A }$ {0,1} × {0,1} gnorance: Is see every post examples, still	× {0,1}> Learnin sible inp have 2 ⁹ =	< {0,1} - Ig Poss ut/outpu = 512 pos	→ {0,1} ible? t pair ssibilitie:	= 2 ²⁴ =	65536 f	unction values
1	Example	~				,	1
	0	- 4	0	A8 0	0	2	
	1	0	0	0	1	2	
	2	0	0	1	0	0	
	3	ō	Ő	1	1	1	
	4	0	1	0	0	0	
	5	0	1	0	1	0	
	6	0	1	1	0	0	
	7	0	1	1	1	?	
	8	1	0	0	0	?	
	9	1	0	0	1	1	
	10	1	0	1	0	?	
	11	1	0	1	1	?	
	12	1	1	0	0	0	
	13	1		0		?	
	14 15	1	1	1	0	?	KSI
CIS 830: Advance	ed Topics in Ar	tificial In	telligen	ce	Dep	artment of Con	Kansas State University nputing and Information Sciences

Specificat - Similat - 6 attrik - Nomin Binary (B	tion for E r to a data outes: Sky al-valued oolean-Va	xamples type defir , Temp, H (symbolic alued or	nition umidity, Wind attributes - H-Valued) (l, Water, F enumerati Concept	orecast ve data ty	pe	
				a tha Ca	noral Co	ncont	
Supervise Example	ed Learni Sky	Air Temp	Humidity	Wind	Water	Forecast	Enjoy Sport
Supervise Example	ed Learni Sky Sunny	Air Temp Warm	Humidity Normal	Wind Strong	Water Warm	Forecast Same	Enjoy Sport Yes
Supervise Example 0 1	ed Learni Sky Sunny Sunny	Air Temp Warm Warm	Humidity Normal High	Wind Strong Strong	Water Warm Warm	Forecast Same Same	Enjoy Sport Yes Yes
Supervise Example 0 1 2	ed Learni Sky Sunny Sunny Rainy	Air Temp Warm Warm Cold	Humidity Normal High High	Wind Strong Strong Strong	Water Warm Warm Warm	Forecast Same Same Change	Enjoy Sport Yes Yes No

Prototypical Concept Learning Tasks Given Instances X: possible days, each described by attributes *Sky*, *AirTemp*, *Humidity*, *Wind*, *Water*, *Forecast* $\begin{array}{l} \mbox{Target function c = EnjoySport: X \to H = {{Rainy, Sunny} \times {Warm, Cold} \times {Normal, High} \times {None, Mild, Strong} \times {Cool, Warm} \times {Same, Change} $ \to $ {0, $the conduct of the second sec$ 13 Hypotheses H: conjunctions of literals (e.g., <?, Cold, High, ?, ?, ?>) Training examples D: positive and negative examples of the target function $\langle \boldsymbol{x}_{1,\boldsymbol{c}}(\boldsymbol{x}_{1})\rangle,\ldots,\langle \boldsymbol{x}_{m,\boldsymbol{c}}(\boldsymbol{x}_{m})\rangle$ Determine Hypothesis $h \in H$ such that h(x) = c(x) for all $x \in D$ Such h are consistent with the training data What Is A Concept Learning Algorithm? L: Vector ($X \times H \equiv \text{boolean}$) \rightarrow ($X \rightarrow H$) Type of L means: given vector of examples (data set), return hypothesis h 15 h: $X \rightarrow H$ CIS 830: Advanced Topics in Artificial Intelligence

Representing Version Spaces

Hypothesis Space

- A finite meet semilattice (partial ordering Less-Specific-Than; $\perp \equiv all$?)
- Every pair of hypotheses has a greatest lower bound (GLB) $VS_{H,D}$ = the consistent poset (partially-ordered subset of *H*)
- Definition: General Boundary
- General boundary G of version space VS_{H n}: set of most general members
- Most general = minimal elements of $VS_{H,D}$ = "set of necessary conditions"
- Definition: Specific Boundary
- Specific boundary S of version space $VS_{H,D}$: set of most specific members
- Most specific = maximal elements of $VS_{H,D}$ = "set of sufficient conditions" Version Space
- Every member of the version space lies between *S* and *G*
- − $VS_{H,D} \equiv \{ h \in H \mid \exists s \in S : \exists g \in G : g \leq_P h \leq_P s \}$ where $\leq_P \equiv$ Less-Specific-Than

151

CIS 830: Advanced Topics in Artificial Intelligence

Terminology

Supervised Learning

- Concept function: observations to categories; so far, boolean-valued (+/-)
- Target (function) true function f
- Hypothesis proposed function h believed to be similar to f _
- Hypothesis space space of all hypotheses that can be generated by the earning system
- **Example** tuples of the form $\langle x, f(x) \rangle$
- Instance space (aka example space) space of all possible examples
- Classifier discrete-valued function whose range is a set of class labels Inductive Learning
- Inductive generalization process of generating hypotheses $h \in H$ that describe cases not yet observed
- The inductive learning hypothesis basis for inductive generalization Analytical Learning
- - Domain theory T- set of assertions to explain examples Analytical generalization - process of generating h consistent with D and T
 - 5 Explanation – proof in terms of T that x satisfies c(x)

CIS 830: Advanced Topics in Artificial Intelligence

Summary Points						
Concept Learning as Search through H						
 Hypothesis space H as a state space 						
 Learning: finding the correct hypothesis 						
nductive Leaps Possible Only if Learner Is Biased						
- Futility of learning without bias						
 Strength of inductive bias: proportional to restrictions on hypotheses 						
Modeling Inductive Learners						
- Equivalent inductive learning, deductive inference (theorem proving) problems						
 Hypothesis language: syntactic restrictions (aka representation bias) 						
Views of Learning and Strategies						
 Removing uncertainty ("data compression") 						
- Role of knowledge						
Integrated Inductive and Analytical Learning						
- Using inductive learning to acquire domain theories for analytical learning						
 Roles of integrated learning in KDD 						
Next Time: Introduction to ANNs						
30: Advanced Topics in Artificial Intelligence Kansas State University Department of Computing and Information Sciences						

Cond

Indu

Mode

View

Integ

Next

CIS 830: A