Lecture 11

Artificial Neural Networks (1 of 4)

Friday, February 11, 2000

Kiran Nandivada
Department of Computing and Information Sciences, KSU

Readings:
"Incorporating Advice into Agents that Learn from Reinforcements"
Richard Maclin and Jude W. Shavlik

Presentation Overview

Paper
- "Incorporating Advice into Agents that Learn from Reinforcements"
 - Authors: Richard Maclin and Jude W. Shavlik, Computer Sciences Department, University of Wisconsin

Overview
- Learning from reinforcements by accepting advice from an external observer
 - The system accepts the advice
 - The external observer can provide advice at any time

Presentation Outline

Issues
- Is the advice given by the external observer used effectively?
- Does it matter in this type of learning when the advice is given?
- Key strengths - the use of external observer enhanced the learning process
- Key weaknesses - accepts only single advice at a time

Outline
- Advice taking
 - Proposed a strategy where several steps described by Hayes-Roth, Klahr, and Mostow (1981), can be achieved using reinforcement learning.
- Experiments
- Test Environment
- Results
- Future work
- Summary

Terminology

Reinforcement learning
- Reward or Reinforcement
 - Feedback provided to the agent for the action it performed in the previous state
 - Task of learning
 - The agent learns from this reward and chooses actions that produce highest cumulative reward (Mitchell, Ch. 13)

Q-learning
- The agent learns a numerical evaluation function defined over states of actions, and then implement an optimal policy in terms of this evaluation function (Mitchell, Ch. 13)

Connectionist Q-learning
- The utility function is implemented as neural network, whose inputs describe the current state and whose outputs are the utility of each action

Advice-taking

Step 1 - Provide advice to the agent
 - Advice is provided by the external observer whenever the observer feels appropriate

Step 2 - Convert the advice to an internal representation
 - Expression of advice is in the form of a simple programming language and list of terms which specific certain tasks.

Step 3 - Convert the advice into an usable form
 - Requires a compiler for certain task specific terms

Step 4 - Integrate the reformulated advice into the agent's current knowledge base
 - Used an extended KBANN approach

Example - Agent learning to play a video game
 - A sample version of the advice provided to the agent
Advice-taking

- A sample version of advice
- Advice

IF An Enemy IS (Near West) THEN
 An Obstacle IS (Near North)
 MULTIATION
 MoveEast MoveNorth
END;

WHEN Surrounded
 OKtoPushEast
 An Enemy IS Near
REPEAT
 PushEast
 MoveEast
UNTIL
 ¬ OKtoPushEast
 ¬ Surrounded

Advice-taking

- Network showing the advice added by adding hidden units that correspond to the advice

Advice-taking

- Allows advice that contains multi-step plans

Advice-taking

- Allows advice that refers to previously defined terms

Experimentation

- Step 5 - Judging the value of advice
 - Introduces a Q-learning concept to “wash-out” a poor advice
 - Empirically evaluate the new advice
 - Retracts or counteract a bad advice

- Experiments
 - Goal - Empirically evaluate whether this particular approach of providing advice is better
 - Hypothesis 1 - System takes advantage of the advice
 - Hypothesis 2 - Observer provides appropriate advice to the agent at any time during the training

- Test Environment
 - Agent performs certain actions which include moving and pushing in the directions East, West, North, and South and doing nothing
Experimentation

- Assumes an agent-centered model partitioned into sectors
- Agent calculates the percentage (input to the network) of the type of the object occupied in each sector

Methodology

- Train the agents for a fixed number of episodes
- Choose an initial topology
- Provide advice to the agent
- Four forms of advice are provided to the agent (ElimEnemies, Surrounded, SimpleMoves, NonLocalMoves)

Result

- Experiment 1
 - Train the agent initially
 - Measure the value of adding advice
 - Add the advice and measure the test set reinforcement

Results

<table>
<thead>
<tr>
<th>Advice added</th>
<th>Enemies</th>
<th>Rewards</th>
<th>Survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.15</td>
<td>3.09</td>
<td>32.1</td>
</tr>
<tr>
<td>SimpleMoves</td>
<td>0.28</td>
<td>3.79</td>
<td>39.6</td>
</tr>
<tr>
<td>NonLocalMoves</td>
<td>0.26</td>
<td>3.95</td>
<td>39.1</td>
</tr>
<tr>
<td>ElimEnemies</td>
<td>0.44</td>
<td>3.50</td>
<td>38.3</td>
</tr>
<tr>
<td>Surrounded</td>
<td>0.30</td>
<td>3.48</td>
<td>46.2</td>
</tr>
</tbody>
</table>

Exp 1 - Average test performance on the four tasks in paper (significant with 99% confidence)

Significance

- Reported the gains obtained over the baseline or without the addition of advice
- Initial training was for 1000 episodes and system training after adding advice was for 2000 episodes and the baseline for 3000 episodes

Experiment 2

- Insert advice at different times during the training (0, 1000, and 2000 episodes)
- Convergence to same amount of reinforcement irrespective of the time the advice was provided
- Observe whether each task corresponding to each piece of advice is performed

Summary

- **Future Work**
 - Accepting multiple pieces of advice at different times during training
 - Evaluate periodic retraining or “replay” on certain pairs of states
- **Possible improvements**
 - a) Temporal difference method
 - b) Also, can improve on their advice taking strategy
 - c) Use EBL to improve on pieces of advice and use it to solve any advice-taking problems
- **Content Critique**
 - Key Contribution - A good example of how the learner can accept “general advice” at any time during the training (agent learning naturally)
 - Strengths - Proved that the advice improves the expected rewards
 - Weaknesses - No reference to convergence in terms of error and generalization
- **Presentation Critique**
 - Audience - AI, Robotics (principally concerns game playing strategically)
 - Positive points - Good introduction and explanation regarding advice taking steps
 - Negative points - Results - Did not mention what kind of statistical methods were used to get the significance they reported.