Lecture 14

Artificial Neural Networks (Discussion 2 of 4):
Temporal-Difference Reinforcement Learning

Friday, February 18, 2000

William H. Hsu
Department of Computing and Information Sciences, KSU

http://www cis .ksu.edu/~bhsu

Readings:
Sections 20.2-20.7, Russell and Norvig
Sections 13.5-13.8, Mitchell
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Quick Review:

Lecture Outline

Readings: 13.1-13.4, Mitchell; 20.2-20.7, Russell and Norvig
Outside Reading: “Connectionist Learning Procedures”, Hinton
Suggested Exercises: 13.4, Mitchell; 20.11, Russell and Norvig
Reinforcement Learning (RL) Concluded
— Control policies that choose optimal actions
— MDP framework, continued
— Continuing research topics

« Active learning: experimentation (exploration) strategies

« Generalization in RL

« Next: ANNs and GAs for RL
« Temporal Diffference (TD) Learning

Family of dynamic programming algorithms for RL
+ Generalization of Qlearning
* More than one step of lookahead

— More on TD learning in action KS“
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Quick Review:

Policy Learning Framework

| Agent Policy

R
Reward @ Action

| Environment
+ Interactive Model
— State s (may be partially observable)
— Agent selects action a based upon (current) policy

+ Incremental reward (akareinforcement) r(s, a) presented to agent
« Taking action puts agent into new state s’ = (s, a) in environment

— Agent uses decision cycle to estimate s’, compute outcome distributions, select
new actions

« Reinforcement Learning Problem
— Given

« Observation sequence s, 0%~ s, 0%~ s, OfA%F - -
« Discount factor y [0, 1)

— Learn to: choose actions that maximize r(f) + yr(t + 1) + y?r(t + 2) + ... K’S m
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Learning Scenarios

QLearning
« Deterministic World Scenario

— “Knowledge-free” (here, model-free ) search for policy 1tfrom policy space M

— For each possible policy 1M, can define an evaluation function over states:
Vo(s)=r(t)+yr (t+2)+y2r(t+1)+...
= Zy’r(tﬂ')
where r(t), r(t + 1), r(t + 2), ... are generated by following policy ~ Tstarting at state s
— Restated, task is to learn optimal policy 1
m* = arg max V" (s),0s
"

« Finding Optimal Policy
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+ Q-Learning Training Rule  Q(s, a) - r(s, a)+y max Q(s", a’) Ksu
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First Learning Scenario

Passive learning in known environment (Section 20.2, Russell and Norvig)
— Intuition (passive learning in known and unknown environments)
« Training sequences (S;, Sy, ..., S, I = U(S,))

« Learner has fixed policy 1 determine benefits (expected total reward)
— Important note: known # accessible # deterministic (even if transition model
known, state may not be directly observable and may be stochastic)
— Solutions: naive updating (LMS), dynamic programming, temporal differences
« Second Learning Scenario
— Passive learning in unknown environment (Section 20.3, Russell and Norvig)
— Solutions: LMS, temporal differences; adaptation of dynamic programming
« Third Learning Scenario

— Active learning in unknown environment (Sections 20.4-20.6, Russell and Norvig)
— Policy must be learned (e.g., through application and exploration)

— Solutions: dynamic programming (Q-learning), temporal differences K’S“
i
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Reinforcement Learning Methods

* Solution Approaches
— Naive updating: | east-mean-square (LMS) utility update
— Dynamic programming (DP): solving constraint equations
+ Adaptive DP (ADP): includes value iteration, policy iteration, exact Q-learning
+ Passive case: teacher selects sequences (trajectories through environment)
« Active case: exact Q-learning (recursive exploration)
— Method of temporal differences (ID): approximating constraint equations
« Intuitive idea: use observed transitions to adjust U(s) or Q(s, a)
« Active case: approximate Q-learning (TD Q-learning)
« Passive: Examples
— Temporal differences: U(s) — U(s) + Y(R(S) + U(s") - U(s))
— No exploration function
« Active: Examples
— ADP (value iteration): U(s) « R(s) +ymax, (3¢ (Mss(a) - US)
— Exploration (exact Q-learning): Q(s, a) — r(s, a)+y max Qs a) K’S“
-y T
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Active Learning and Exploration UG PRI [P e (M Tl

Rationale and Formula

« Active Learning Framework ¢ Q-Learning
— So far: optimal behavior is to choose action with maximum expected utility (MEU), -
given current estimates

Reduce discrepancy between successive estimates
— Qestimates

Proposed revision: action has two outcomes « One step time difference

+ QUs(t). at) = r(t) +y max Q(s(t +1). a)
« Method of Temporal Differences (TD())), aka Temporal Differencing

« Gains rewards on current sequence (agent preference: greed)
« Affects percepts — ability of agent to learn — ability of agent to receive future

rewards (agent preference: “investment in education”, aka novelty , curiosity ) _ Why not two steps?
— Tradeoff: comfort (lower risk) reduced payoff versus higher risk, high potential A
¢ Jredueed pey e one Q(s(0)ale) =r(e) yr t+1)y? max Ofs(e +2). a)
— Problem: how to quantify tradeoff, reward latter case? a

— Or nsteps?
Q(s(t), alt)) = r(t)+yr (t +2)+...+y " Ir(t+n-1)+y" max Ols(t+n). a)
— TD(\) formula
« Blends all of these
+ Q(s(t). alt) = (-A) Q(s(0). alt))+AQ (s(t). alt)) +A*QV (s(t) alt)) +... |

— Intuitive idea: use constant 0 < A < 1to combine estimates from various

« Exploration
— Define: exploration function - e.g., f(u, N) = (n<N) ? R*: u
« u: expected utility under optimistic estimate; fincreasing in u (greed)
* n=N(s, a): number of trials of action-value pair; f decreasing in n (curiosity)
— Optimistic utility estimator: U*(s) — R(s) + ymax, f (3o (Ms () - UX(S)), (s, a))

« Key Issues: Generalization (Today); Allocation (CIS 830) K : lookahead distances (note normalization factor 1 - A) K 1
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Temporal Difference Learning: Applying Results of RL:
TD(A) Training Rule and Algorithm Models versus Action-Value Functions
« Training Rule: Derivation from Formula < Distinction: Learning Policies with and without Models
— Formula: Q*(s(t), a(t))= (1-A) @“(s(c). a(t))+A@ P(s(t), a(t)) +A’Q¥ (s (), a(t)+... | — Model-theoretic approach
— Recurrence equation for QN(s(t), a(t)) (recursive definition) defines update rule « Learning: transition function §, utility function U
« Select a(t + i) based on current policy + ADP component: value/policy iteration to reconstruct U from R
. A - _ - « Putting learning and ADP components together: decision cycle (Lecture 17)
Al 'tho (s(r), a(l)] r(r)+yl(l A)mﬂax Q(s(l+l), a)+A d(S(Hl), a(Hl))J « Function Active-ADP-Agent: Figure 20.9, Russell and Norvig
. gorithm

— Contrast: Q-learning
— Use above training rule

« Produces estimated action-value function
— Properties « No environment model (i.e., no explicit representation of state transitions)
* NB: this includes both exact and approximate (e.g., TD) Q-learning
unction Q-Learning-Agent: Figure 20.12, Russell and Norvig

» Ramifications: A Debate

— Knowledge in model-theoretic approach corresponds to “pseudo-experience” in

+ Sometimes converges faster than Qlearning
« Converges for learning V* for any 0 <A < 1 [Dayan, 1992]
+ Other results [Sutton, 1988; Peng and Williams, 1994]
— Application: Tesauro’s TD-Gammon uses this algorithm [Tesauro, 1995]

— Recommended book TD (see: 20.3, Russell and Norvig; distal supervised learning ; phantom induction )
« Reinforcement Learning [Sutton and Barto, 1998] — Dissenting conjecture: model-free methods “reduce need for knowledge”
http://Awww.cs.umass.edu/~rich/book/the-book.html TR — Atissue: when is it worth while to combine analytical, inductive learning? g
e ————— KSU KSU
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Applying Results of RL:

MDP Decision Cycle Revisited ezl 1 R

« Function Decision-Theoretic-Agent (Percept) » Explicit Representation
— Percept: agent's input; collected evidence about world (from sensors) — One output value for each input tuple
— COMPUTE updated probabilities for current state based on available evidence, — Assumption: functions represented in tabular form for DP
including current percept and previous action (prediction, estimation) * Utility U: state — value, Uy state vector — value
— COMPUTE outcome probabilities for actions « Transition M: state x state x action — probability
given action descriptions and probabilities of current state (decision model) + Reward R: state - value, r: state x action - value
— SELECT action with highest expected utility, * Action-value Q: state x action - value
given probabilities of outcomes and utility functions — Reasonable for small state spaces, breaks down rapidly with more states
— RETURN action « ADP convergence, time per iteration becomes unmanageable
« Situated Decision Cycle ~. ‘Real-world problem§ e.and games: still |n.!rac1able even for approximate ADP
« Solution Approach: Implicit Representation
— Update percepts, collect rewards N
— Compact representation: allows calculation of U, M, R, Q
— Update active model (prediction and estimation; decision model) ~
. ) I — eg., checkers: V(b)=w, +w,bp(b)+w,rp(b)+w,bk(b)+w,rk(b)+w,bt(b)+w,rt(b)
— Update utility function: value iteration -
+ Input Generalization
— Selecting action to maximize expected utility: performance element . . . .
X X . . X — Key benefit of compact representation: inductive generalization over states
« Role of Learning: Acquire State Transition Model, Utility Function K i — Implicit representation : RL :: representation bias : supervised learning K f
i i
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Relationship to Dynamic Programming

Subtle Issues and

Q-Learning
— Exact version closely related to DP-based MDP solvers
— Typical assumption: perfect knowledge of (s, a) and r(s, a)
— NB: remember, does not mean
+ Accessibility (total observability of s)
« Determinism of &, r
« Situated Learning

— aka in vivo, online, lifelong learning

— Achieved by moving about, interacting with real environment
— Opposite: simulated, in vitro learning
« Bellman’s Equation [Bellman, 1957]
(0s08).v"(s)= Elr(s, m(s)) +yV “(6(s.mls)
— Note very close relationship to definition of optimal policy:
m* = arg max V" (s),0s
"

— Result: msatisfies above equation jff m=m* K 1
B |
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RL Applications:

Game Playing

+ Board Games
— Checkers
« Samuel's player [Samuel, 1959]: precursor to temporal difference methods

+ Early case of multi-agent learning and co-evolution
— Backgammon

+ Predecessor: Neurogammon (backprop-based) [Tesauro and Sejnowski, 1989]
+ TD-Gammon: based on TD(A) [Tesauro, 1992]
* Robot Games
— Soccer
* RoboCup web site: http://www.robocup.org
« Soccer server manual: http://www.dsv.su.se/~johank/RoboCup/manual/
— Air hockey: http://cyclops.csl.uiuc.edu
« Discussions Online (Other Games and Applications)
— Sutton and Barto book: http://www.cs.umass.edu/~rich/book/11/nodel.html
— Sheppard's thesis: http://www. _cs.jhu.edu/~sheppard /thesis/node32.html Krsm
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Terminology

« Reinforcement Learning (RL)

— Definition: learning policies T: state — action from <<state, action>, reward>

+ Markov decision problems (MDPs): finding control policies to choose optimal
actions

+ Q-learning: produces action-value function Q: state x action — value
(expected utility)

— Active learning: experimentation (exploration) strategies
« Exploration function: f(u, n)

« Tradeoff: greed (u) preference versus novelty (1/ n) preference, aka curiosity
« Temporal Diffference (TD) Learning
— A: constant for blending alternative training estimates from multi-step lookahead
— TD(M): algorithm that uses recursive training rule with A-estimates
« Generalization in RL
— Explicit representation: tabular representation of U, M, R, Q

— Implicit representation: compact (aka compressed) representation K :
i
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Continuing Research

Current Research Topics

— Replace table of Q estimates with ANN or other generalizer
+ Neural reinforcement learning (next time)
+ Genetic reinforcement learning (next week)

— Handle case where state only partially observable

« Estimation problem clear for ADPs (many approaches, e.g., Kalman filtering)
+ How to learn Qin MDPs?

— Optimal exploration strategies

— Extend to continuous action, state

— Knowledge: incorporate or attempt to discover?

* Role of Knowledge in Control Learning

— Method of incorporating domain knowledge: simulated experiences
« Distal supervised learning [Jordan and Rumelhart, 1992]
+ Pseudo-experience [Russell and Norvig, 1995]
+ Phantom induction [Brodie and Dejong, 1998])

— TD Q-learning: knowledge discovery or brute force (or both)?

kst
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RL Applications:

Control and Optimization

Mobile Robot Control: Autonomous Exploration and Navigation

— USC Information Sciences Institute (Shen et al): http://www.isi.edu/~shen

— Fribourg (Perez): http:/Islwww.epfl.ch/~aperez/robotreinfo.html

— Edinburgh (Adams et al): http://www.dai.ed.ac.uk/groups/mrg/MRG.html|
— CMU (Mitchell et al): http://www.cs.cmu.edu/~rll
« General Robotics: Smart Sensors and Actuators

— CMU robotics FAQ: http://www.frc.ri.cmu.edu/robotics-faq/TOC.html

— Colorado State (Anderson et al): http://www.cs.colostate.edu/~anderson/res/rl/
« Optimization: General Automation
— Planning

* UM Amherst: http://eksl-www.cs.umass.edu/planning-resources.html
+ USC ISI (Knoblock et al) http://www.isi.edu/~knoblock

— Scheduling: http://www.cs.umass.edu/~rich/book/11/node7.html
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Summary Points

Reinforcement Learning (RL) Concluded
— Review: RL framework (learning from <<state, action>, reward>
— Continuing research topics
+ Active learning: experimentation (exploration) strategies
+ Generalization in RL: made possible by implicit representations
Temporal Diffference (TD) Learning
— Family of algorithms for RL: generalizes Q-learning
— More than one step of lookahead
— Many more TD learning results, applications: [Sutton and Barto, 1998]
* More Discussions Online

— Harmon’s tutorial: http://www-__anw.cs.umass .edu/~mharmon /rltutorial /

— CMU RL Group: http://www.cs.cmu.edu/Groups/reinforcement/www/

— Michigan State RL Repository: http://www.cse.msu.edu/rlr/
Next Time: Presentation on Generative Models (Wake-Sleep Algorithm)
— Based on associative memory for pattern recognition

— Related to distal supervised learning (previous), Bayesian networks (next) K i
i
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