

First Learning Scenario
 Passive learning in known environment (Section 20.2, Russell and Norvig)
 Intuition (passive learning in known and unknown environments)
 Training sequences (s₁, s₂,, s_n, r = U(s_n))
 Learner has fixed policy π; determine benefits (expected total reward)
 Important note: known ≠ accessible ≠ deterministic (even if transition model known, state may not be directly observable and may be stochastic)
- Solutions: naïve updating (LMS), dynamic programming, temporal differences

Second Learning Scenario

- Passive learning in unknown environment (Section 20.3, Russell and Norvig)

Learning Scenarios

- Solutions: LMS, temporal differences; adaptation of dynamic program
- Third Learning Scenario
 - Active learning in unknown environment (Sections 20.4-20.6, Russell and Norvig)
 - Policy must be learned (e.g., through application and exploration)
 - Solutions: dynamic programming (Q-learning), temporal differences ĥ

CIS 830: Advanced Topics in Artificial Intelligence

Reinforcement Learning Methods

- Exploration (exact Q-learning): $\hat{Q}(s, a) \leftarrow r(s, a) + \gamma \max \hat{Q}(s', a')$

CIS 830: Advanced Topics in Artificial Intelligence

18

Active Learning and Exploration

Active Learning Framework

- So far: optimal behavior is to choose action with maximum expected utility (MEU), given current estimates
- Proposed revision: action has two outcomes
- Gains rewards on current sequence (agent preference: greed)
- + Affects percepts \rightarrow ability of agent to learn \rightarrow ability of agent to receive future
- rewards (agent preference: "investment in education", aka novelty, curiosity)
- Tradeoff: comfort (lower risk) reduced payoff versus higher risk, high potential
- Problem: how to quantify tradeoff, reward latter case?

Exploration

- Define: exploration function e.g., f(u, n) = (n < N)? R^+ : u
- u: expected utility under optimistic estimate; f increasing in u (greed)
- $n \equiv N(s, a)$: number of trials of action-value pair; f decreasing in n (curiosity)
- Optimistic utility estimator: $U^*(s) \leftarrow R(s) + \gamma \max_a f(\sum_{s'} (M_{s,s}(a) \cdot U^*(s)), N(s, a))$
- Key Issues: Generalization (Today); Allocation (CIS 830) 15

CIS 830: Advanced Topics in Artificial Intelligence

CIS 830: Advanced Topics in Artificial Intelligence

Temporal Difference Learning: TD(λ) Training Rule and Algorithm

- Training Rule: Derivation from Formula
- Formula: $Q^{\lambda}(s(t), a(t)) \equiv (1-\lambda) \left[Q^{(1)}(s(t), a(t)) + \lambda Q^{(2)}(s(t), a(t)) + \lambda^2 Q^{(3)}(s(t), a(t)) + \dots \right]$ - Recurrence equation for Q^(i,)(s(t), a(t)) (recursive definition) defines update rule Select a(t + i) based on current policy
 - $Q^{\Lambda}(s(t), a(t)) = r(t) + \gamma \left[(1 \lambda) \max \hat{Q}(s(t+1), a) + \lambda Q^{\Lambda}(s(t+1), a(t+1)) \right]$
- Algorithm
- Use above training rule
- Properties
 - times converges faster than Q learning
 - Converges for learning V* for any 0 $\leq \lambda \leq$ 1 [Dayan, 1992]
 - Other results [Sutton, 1988; Peng and Williams, 1994]
 - Application: Tesauro's TD-Gammon uses this algorithm [Tesauro, 1995]
- Recommended book

• Reinforcement Learning [Sutton and Barto, 1998] http://www.cs.umass.edu/~rich/book/the-book.html

S

(SI

CIS 830: Advanced Topics in Artificial Intelligence

Applying Results of RL: **Models versus Action-Value Functions** Distinction: Learning Policies with and without Models Model-theoretic approach • Learning: transition function δ , utility function U ADP component: value/policy iteration to reconstruct U from R Putting learning and ADP components together: decision cycle (Lecture 17) • Function Active-ADP-Agent: Figure 20.9, Russell and Norvig Contrast: Q-learning Produces estimated action-value function No environment model (i.e., no explicit representation of state transitions) • NB: this includes both exact and approximate (e.g., TD) Q-learning • Function Q-Learning-Agent: Figure 20.12, Russell and Norvig · Ramifications: A Debate Knowledge in model-theoretic approach corresponds to "pseudo-experience" in TD (see: 20.3, Russell and Norvig; distal supervised learning; phantom induction) Dissenting conjecture: model-free methods "reduce need for knowledge" At issue: when is it worth while to combine analytical, inductive learning? 15

CIS 830: Advanced Topics in Artificial Intelligence

Applying Results of RL: **MDP Decision Cycle Revisited**

Function Decision-Theoretic-Agent (Percept)

- Percept: agent's input; collected evidence about world (from sensors)
- COMPUTE updated probabilities for current state based on available evidence,
- including current percept and previous action (prediction, estimation)
- COMPUTE outcome probabilities for actions.
- given action descriptions and probabilities of current state (decision model)
- SELECT action with highest expected utility, given probabilities of outcomes and utility functions
- **RETURN** action
- Situated Decision Cycle - Update percepts, collect rewards
- Update active model (prediction and estimation; decision model) - Update utility function: value iteration
- Selecting action to maximize expected utility: performance element
- Role of Learning: Acquire State Transition Model, Utility Function

CIS 830: Advanced Topics in Artificial Intelligence

Generalization in RL Explicit Representation One output value for each input tuple Assumption: functions represented in tabular form for DP • Utility U: state \rightarrow value, U_h: state vector \rightarrow value • Transition M: state × state × action → probability Reward R: state → value, r: state × action → value • Action-value Q: state × action → value Reasonable for small state spaces, breaks down rapidly with more states ADP convergence, time per iteration becomes unmanageable "Real-world" problems and games: still intractable even for approximate ADP Solution Approach: Implicit Representation Compact representation: allows calculation of U, M, R, Q e.g., checkers: $\hat{V}(b) = w_0 + w_1 b p(b) + w_2 r p(b) + w_3 b k(b) + w_4 r k(b) + w_5 b t(b) + w_6 r t(b)$ Input Generalization Key benefit of compact representation: inductive generalization over state Implicit representation : RL :: representation bias : supervised learning

CIS 830: Advanced Topics in Artificial Intelligence

Relationship to Dynamic Programming		
 Q-Learning Exact version closely related to DP-based MDP solvers Typical assumption: perfect knowledge of δ(s, a) and r(NB: remember, does not mean 	s, a)	
 <u>Situated</u> Learning aka <u>in vivo</u>, <u>online</u>, <u>lifelong</u> learning Achieved by moving about, interacting with real enviror Opposite: <u>simulated</u>, <u>in vitro</u> learning 	nment	
 Bellman's Equation [Bellman, 1957] (∀s∈ S). V'(s) = E[r(s, π(s))+γV'(δ(s,π(s)) + γV'(s), σ(s,π(s)) + γV'(s), σ(s), σ(s))] Note very close relationship to definition of optimal pol π* ≡ arg max V"(s), ∀s 	(s)))] icy:	
- Result: π satisfies above equation iff $\pi = \pi^*$ CIS 830: Advanced Topics in Artificial Intelligence	Kansas State Univers	

RL Applications: Game Playing	Co
Board Games Checkers Samuel's player [Samuel, 1959]: precursor to temporal difference methods Early case of <u>multi-agent learning</u> and <u>co-evolution</u> Backgammon Predecessor. <i>Neurogammon</i> (backprop-based) [Tesauro and Sejnowski, 1989] T <i>D</i> -Gammon: based on <i>TD</i> (<i>i</i>) [Tesauro, 1992] Robot Games Soccer <i>RoboCup</i> web site: <u>http://www.robocup.org</u> Soccer server manual: <u>http://www.rdsv.su.se/-johank/RoboCup/manual/</u> Air hockey: <u>http://cyclops.csl.uluc.edu</u> Discussions Online (Other Games and Applications) Sutton and Barto book: <u>http://www.csu.mass.edu/~rich/book/11/node1.html</u> Sherpard's thesis: <u>http://www.csu.mass.edu/~rich/book/11/node1.html</u>	Mobile Robot Control USC Information Sc Fribourg (Perez): htt Edinburgh (Adams of CMU (Mitchell et al)) General Robotics: Sm CMU robotics FAQ: Colorado State (Anc Optimization: General Planning UM Amherst: htt USC ISI (Knoblo Scheduling: http://w
IS 830: Advanced Topics in Artificial Intelligence	CIS 830: Advanced Topics in

	RL Applications: Control and Optimization
• Mo	bile Robot Control: Autonomous Exploration and Navigation
-	USC Information Sciences Institute (Shen et al): http://www.isi.edu/~shen
-	Fribourg (Perez): http://lslwww.epfl.ch/~aperez/robotreinfo.html
-	Edinburgh (Adams et al): http://www.dai.ed.ac.uk/groups/mrg/MRG.html
-	CMU (Mitchell et al): http://www.cs.cmu.edu/~rll
• Ge	neral Robotics: Smart Sensors and Actuators
_	CMU robotics FAQ: http://www.frc.ri.cmu.edu/robotics-faq/TOC.html
-	Colorado State (Anderson et al): http://www.cs.colostate.edu/~anderson/res/rl/
• Op	timization: General Automation
_	Planning
	 UM Amherst: <u>http://eksl-www.cs.umass.edu/planning-resources.html</u>
	USC ISI (Knoblock et al) <u>http://www.isi.edu/~knoblock</u>
_	Scheduling: http://www.cs.umass.edu/~rich/book/11/node7.html
	KSU
CIS 830:	Advanced Topics in Artificial Intelligence Restriction and Information State University of Computing and Information Sciences

_			
Те	rm	ino	loav

<u>Reinforcement Learning (RL)</u>

- Definition: learning policies π : state → action from <<state, action>, reward>
 Markov decision problems (MDPs): finding control policies to choose optimal actions
- <u>Q-learning</u>: produces action-value function Q : state × action → value (expected utility)
- Active learning: experimentation (exploration) strategies
- Exploration function: f(u, n)
- Tradeoff: greed (u) preference versus novelty (1 / n) preference, aka curiosity <u>Temporal Difference (TD) Learning</u>

(51

- $-\lambda: constant for blending alternative training estimates from multi-step lookahead$ $- TD(<math>\lambda$): algorithm that uses recursive training rule with λ -estimates
- <u>Generalization</u> in RL
- Explicit representation: tabular representation of U, M, R, Q
- Implicit representation: compact (aka compressed) representation
- CIS 830: Advanced Topics in Artificial Intelligence

- Summary Points

 Reinforcement Learning (RL) Concluded

 Review: RL framework (learning from <<state, action>, reward>
 Continuing research topics

 Active learning: experimentation (exploration) strategies
 Generalization in RL: made possible by implicit representations

 Fermoral Difference (TD) Learning
 Family of algorithms for RL: generalizes Q-learning
 More than one step of lookahead
 Many more TD learning results, applications: [Sutton and Barto, 1998]
 More Discussions Online
 Harmon's tutorial: http://www.cs.cmu.edu/Groups/reinforcement//mww/
 Michigan State RL Repository: http://www.cse.msu.edu/rinf
 Nore The Theoremetic on the Communication of the commu
- Next Time: Presentation on <u>Generative Models</u> (Wake-Sleep Algorithm)
 Based on <u>associative memory</u> for pattern recognition
- Related to distal supervised learning (previous), Bayesian networks (next)
- CIS 830: Advanced Topics in Artificial Intelligence