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Readings:
“Modular and Hierarchical Learning Systems”, M. I. Jordan and R. Jacobs
(Reference) Section 7,5, Mitchell
(Reference) Lectures 21-22, CIS 798 (Fall, 1999) i
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Outside Reading
— Section 7.5, Mitchell
— Section 5, MLC++ manual, Kohavi and Sommerfield
— Lectures 21-22, CIS 798 (Fall, 1999)
This Week's Paper Review: “Bagging, Boosting, and C4.5",J. R. Quinlan
Combining Classifiers
— Problem definition and motivation: improving accuracy in concept learning
— General framework: collection of weak classifiers to be improved
Examples of Combiners (Committee Machines)
— Weighted Majority (WM), Bootstrap Aggregating (Bagaing), Stacked
Generalization (Stacking), Boosting the Margin
— Mixtures of experts, Hierarchical Mixtures of Experts (HME)
Committee Machines
— Static structures: ignore input signal
— Dynamic structures (multi-pass): use input signal to improve classifiers i
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« Problem Definition
- Given
« Training data set D for supervised learning
+ Ddrawn from common instance space X
« Collection of inductive learning algorithms, hypothesis languages (inducers)
— Hypotheses produced by applying inducers to s(D)
+ s: Xvector - X'vector (sampling, transformation, partitioning, etc.)
« Can think of hypotheses as definitions of prediction algorithms (“classifiers”)
— Return: new prediction algorithm (not necessarily O H) for x 0 X that combines
outputs from collection of prediction algorithms
« Desired Properties
— Guarantees of performance of combined prediction
— e.g., mistake bounds; ability to improve weak classifiers
« Two Solution Approaches
— Train and apply each inducer; learn combiner function(s) from result

— Train inducers and combiner function(s) concurrently isﬁ
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Intuitive Idea

— Combine experts (aka prediction algorithms, classifiers) using combiner function

— Combiner may be weight vector (WM), vote (bagging), trained inducer (stacking)
Weighted Majority (WM)

— Weights each algorithm in proportion to its training set accuracy

— Use this weight in performance element (and on test set predictions)

— Mistake bound for WM
Bootstrap Aggregating (Bagging)

— Voting system for collection of algorithms

— Training set for each member: sampled with replacement

— Works for unstable inducers (search for h sensitive to perturbation in D)
Stacked Generalization (aka Stacking)

— Hierarchical system for combining inducers (ANNs or other inducers)

— Training sets for “leaves”: sampled with replacement; combiner: validation set
Single-Pass: Train Classification and Combiner Inducers Serially

Static Structures: Ignore Input Signal isa
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What Is A Weak Classifier?
— One not guaranteed to do better than random guessing (1 / number of classes)
— Goal: combine multiple weak classifiers, get one at least as accurate as strongest
Data Fusion
— Intuitive idea
+ Multiple sources of data (sensors, domain experts, etc.)
+ Need to combine systematically, plausibly
— Solution approaches
« Control of intelligent agents: Kalman filtering
+ General: mixture estimation (sources of data [ predictions to be combined)
Mixtures of Experts
— Intuitive idea: “experts” express hypotheses (drawn from a hypothesis space)

— Solution approach (next time)
« Mixture model: estimate mixing coefficients
« Hierarchical mixture models: divide-and-conquer estimation method !
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* Weight-Based Combiner
— Weighted votes: each prediction algorithm (classifier) h;maps from x O X to h(x)
— Resulting prediction in set of legal class labels
— NB: as for Bayes Optimal Classifier, resulting predictor not necessarily in H

Intuitive Idea
— Collect votes from pool of prediction algorithms for each training example

— Decrease weight associated with each algorithm that guessed wrong (by a
multiplicative factor)

— Combiner predicts weighted majority label
« Performance Goals
— Improving training set accuracy
« Want to combine weak classifiers
+ Want to bound number of mistakes in terms of minimum made by any one

algorithm
— Hope that this results in good generalization quality i
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« Bootstrap Aggregating aka Bagging
— Application of bootstrap sampling
+ Given: set Dcontaining m training examples
« Create S[i] by drawing m examples at random with replacement from D
« S[i] of size m: expected to leave out 0.37 of examples from D
— Bagging
« Create k bootstrap samples S[1], §[2], ..., S[k]
« Train distinct inducer on each S[/] to produce k classifiers
« Classify new instance by classifier vote (equal weights)
* Intuitive Idea
— “Two heads are better than one”
— Produce multiple classifiers from one data set
+ NB: same inducer (multiple instantiations) or different inducers may be used
« Differences in samples will “smooth out” sensitivity of L,Hto D i
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« Stacked Generalization aka Stacking
« Intuitive Idea

_ Train multiple learners Stacked Generalization

+ Each uses subsample of D 4 Network
+ May be ANN, decision tree, etc. Predictions
— Train combiner on validation segment
— See [Wolpert, 1992; Bishop, 1995]
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+ So Far: Single-Pass Combiners
— FEirst, train each inducer
— Then, train combiner on their output and evaluate based on criterion
+ Weighted majority: training set accuracy
+ Bagging: training set accuracy
« Stacking: validation set accuracy
— Finally, apply combiner function to get new prediction algorithm (classfier)
+ Weighted majority: weight coefficients (penalized based on mistakes)
+ Bagging: voting committee of classifiers
« Stacking: validated hierarchy of classifiers with trained combiner inducer
» Next: Multi-Pass Combiners
— Train inducers and combiner function(s) concurrently

— Learn how to divide and balance learning problem across multiple inducers

— Framework: mixture estimation isﬁ

« Combining Classifiers
— Problem definition and motivation: improving accuracy in concept learning
— General framework: collection of weak classifiers to be improved (data fusion)
« Weighted Majority (WM)
— Weighting system for collection of algorithms
+ Weights each algorithm in proportion to its training set accuracy
+ Use this weight in performance element (and on test set predictions)
— Mistake bound for WM
« Bootstrap Aggregating (Bagging)
— Voting system for collection of algorithms
— Training set for each member: sampled with replacement
— Works for unstable inducers
« Stacked Generalization (aka Stacking)
— Hierarchical system for combining inducers (ANNs or other inducers)
— Training sets for “leaves”: sampled with replacement; combiner: validation set

« Next: Boosting the Margin, Hierarchical Mixtures of Experts i
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« Intuitive Idea
— Another type of static committee machine: can be used to improve any inducer
— Learn set of classifiers from D, but reweight examples to emphasize misclassified
— Final classifier — weighted combination of classifiers
« Different from Ensemble Averaging
— WM: all inducers trained on same D
— Bagging, stacking: training/validation partitions, i.i.d. subsamples S[i] of D
— Boosting: data sampled according to different distributions
« Problem Definition
— Given: collection of multiple inducers, large data set or example stream

— Return: combined predictor (trained committee machine)

« Solution Approaches
— Filtering: use weak inducers in cascade to filter examples for downstream ones
— Resampling: reuse data from D by subsampling (don't need huge or “infinite” D)
— Reweighting: reuse x O D, but measure error over weighted x
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« Intuitive Idea

— Integrate knowledge from multiple experts (or data from multiple sensors)
+ Collection of inducers organized into committee machine (e.g., modular ANN)
« Dynamic structure: take input signal into account
— References
« [Bishop, 1995] (Sections 2.7, 9.7)
« [Haykin, 1999] (Section 7.6)
« Problem Definition

— Given: collection of inducers (“experts”) L, data set D

— Perform: supervised learning using inducers and self-organization of experts

— Return: committee machine with trained gating network (combiner inducer)
« Solution Approach

Let combiner inducer be generalized linear model (e.g., threshold gate)

— Activation functions: linear combination, vote, “smoothed” vote (softmax) i
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* Unspecified Functions

— Update-Inducer @
« Single training step for each expert module

+ e.g., ANN: one backprop cycle, akaepoch Gating

— Compute-Activation
+ Depends on ME architecture
+ ldea: smoothing of “winner-take-all” (*hard” max)

+ Softmax activation function (Gaussian mixture model)
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Batch (as opposed to online) updates: lift Update-Weights out of outer FOR loop
Classification learning (versus concept learning): multiple y; values

g

« Possible Modifications

Arrange gating networks (combiner inducers) in hierarchy (HME) isﬁ
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« Hierarchical Model

— Compare: stacked generalization network
— Difference: trained in multiple passes

« Dynamic Network of GLIMs All examples x and
targets y = c(x) identical

Gating
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Algorithm Combiner-Mixture-Model (D, L, Activation, k)
- m ~ D.size
- FORj — 1TO kDO
wij] -1
UNTIL the termination condition is met, DO
*« FORj ~ 1TO kDO

/l'initialization

P{j] ~ L[j].Update-Inducer (D) /I single training step for L[j]
« FOR/ .~ 1TO mDO

Sum[i] - 0
FORj — 1TO k DO Sum[i] += P[j(D[1])

Net{i] — Compute-Activation (Sumli]) I/ compute g;= Net{i][j]

FORj — 1TO kDO wj] — Update-Weights (w{j], Net[i], D[i])
— RETURN (Make-Predictor (P, w))

Update-Weights: Single Training Step for Mixing Coefficients
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Recall: Perceptron (Linear Threshold Gate) Model
Xp=1

n
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n o()g,xz...,x,,):EE " ;W'X’ >0
g
5,
AifwX>0

Vector notation: o(x)=sgn(%,w)=H
L 1 otherwise
Generalization of LTG Model [McCullagh and Nelder, 1989]

1 otherwise

— Model parameters: connection weights as for LTG
— Representational power: depends on transfer (activation) function
« Activation Function

— Type of mixture model depends (in part) on this definition

— e.g., o(x) could be softmax (x - w) [Bridle, 1990]

* NB: softmax is computed across j =1, 2, ..., k (cf. “hard” max)

+ Defines (multinomial) pdf over experts [Jordan and Jacobs, 1995] a
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Algorithm Combiner-HME (D, L, Activation, Level, k, Classes)
— m — D.size

- FORj < 1TOKDOW[] — 1
— UNTIL the termination condition is met DO
* IF Level> 1 THEN
FORj ~ 1TO kDO

P{j] — Combiner-HME (D, L[j], Activation, Level - 1, k, Classes)

Il initialization

+ ELSE
FOR j — 1 TO kDO P[j] — L[j].Update-Inducer (D)
« FOR/ ~ 1TO mDO
Sum[i] - 0
FORj ~ 1TO kDO
Sumfi] += P[)(D[])
Net[i] — Compute-Activation (Sumli])

FOR [ — 1 TO Classes DO w[l] — Update-Weights (w[/], Net[i], D[i])
— RETURN (Make-Predictor (P, w))
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« Advantages

— Benefits of ME: base case is single level of expert and gating networks

More combiner inducers [0 more capability to decompose complex problems
« Views of HME

— Expresses divide-and-conquer strategy

+ Problem is distributed across subtrees “on the fly” by combiner inducers
+ Duality: data fusion = problem redistribution

+ Recursive decomposition: until good fit found to “local” structure of

D
— Implements soft decision tree
* Mixture of experts: 1-level decision tree (decision stump)
« Information preservation compared to traditional (hard) decision tree
+ Dynamics of HME improves on greedy (high-commitment) strategy of
decision tree induction
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« Framework

— Think of collection of trained inducers as committee of experts
— Each produces predictions given input ($(Dy,), i-e., new x)
— Objective: combine predictions by vote (subsampled D, ,;,), learned weighting
function, or more complex combiner inducer (trained using D4, OF Dyajigation)
« Types of Committee Machines
— Static structures: based only on y coming out of local inducers
+ Single-pass, same data or independent subsamples: WM, bagging, stacking
+ Cascade training: AdaBoost
+ lterative reweighting: boosting by reweighting
— Dynamic structures: take x into account
* Mixture models (mixture of experts aka ME): one combiner (gating) level

Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels

CIS 830:

Specialist-Moderator (SM) networks: partitions of x given to combiners iSﬁ
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Committee Machines aka Combiners
 Static Structures
— Ensemble averaging
+ Single-pass, separately trained inducers, common input
+ Individual outputs combined to get scalar output (e.g., linear combination)
— Boosting the margin: separately trained inducers, different input distributions
« Filtering: feed examples to trained inducers (weak classifiers), pass on to next
classifier iff conflict encountered (consensus model)
« Resampling: aka subsampling (S[i] of fixed size m" resampled from D)
« Reweighting: fixed size S[i] containing weighted examples for inducer
Dynamic Structures

— Mixture of experts: training in combiner inducer (aka gating network)
— Hierarchical mixtures of experts: hierarchy of inducers, combiners
« Mixture Model, aka Mixture of Experts (ME)

— Expert (classification), gating (combiner) inducers (modules, “networks”)
— Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels i
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« Stochastic Gradient Ascent

Maximize log-likelihood function L(®) =Ig P(D | ©)
— Compute
oL oL oL
ow, ' da, ' da,
— Finds MAP values
« Expert network (leaf) weights w;

« Gating network (interior node) weights at lower level (a;), upper level (a)
Expectation-Maximization (EM) Algorithm
— Recall definition

+ Goal: maximize incomplete-data log-likelihood function L(©) = Ig P(D | ©)
« Estimation step: calculate E[unobserved variables | @], assuming current ©
« Maximization step: update @to maximize E[Ig P(D | ©)], D= all variables

— Using EM: estimate with gating networks, then adjust © ={wj, a;, a}
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« Combining Classifiers

— Weak classifiers: not guaranteed to do better than random guessing
— Combiners: functions f: prediction vector x instance — prediction
« Single-Pass Combiners
— Weighted Majority (WM)
* Weights prediction of each inducer according to its training-set accuracy
+ Mistake bound: maximum number of mistakes before converging to correct h
« Incrementality: ability to update parameters without complete retraining
— Bootstrap Aggregating (aka Bagging)
+ Takes vote among multiple inducers trained on different samples of D
+ Subsampling: drawing one sample from another (D ~ D)

« Unstable inducer: small change to D causes large change in h
— Stacked Generalization (aka Stacking)

« Hierarchical combiner: can apply recursively to re-stack
+ Trains combiner inducer using validation set
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Committee Machines aka Combiners
Static Structures (Single-Pass)
— Ensemble averaging

« For improving weak (especially unstable) classifiers
« e.g., weighted majority, bagging, stacking
— Boosting the margin

+ Improve performance of any inducer: weight examples to emphasize errors

+ Variants: filtering (aka consensus), resampling (aka subsampling),
reweighting

Dynamic Structures (Multi-Pass)
— Mixture of experts: training in combiner inducer (aka gating network)
— Hierarchical mixtures of experts: hierarchy of inducers, combiners
Mixture Model (aka Mixture of Experts)

— Estimation of mixture coefficients (i.e., weights)
— Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels

Next Topic: Reasoning under Uncertainty (Probabilistic KDD) i
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