Combining Classifiers

- Problem Definition
 - Given
 - Training data set \(D \) for supervised learning
 - \(D \) drawn from common instance space \(X \)
 - Collection of inductive learning algorithms, hypothesis languages (inducers)
 - Hypotheses produced by applying inducers to \(a(D) \)
 - \(a: X \to X \) vector (sampling, transformation, partitioning, etc.)
 - Can think of hypotheses as definitions of prediction algorithms ("classifiers")
 - Return: new prediction algorithm (not necessarily \(a \)) for \(x: X \) that combines outputs from collection of prediction algorithms
- Desired Properties
 - Guarantees of performance of combined prediction
 - e.g., mistake bounds: ability to improve weak classifiers
- Two Solution Approaches
 - Train and apply each inducer; learn combiner function(s) from result
 - Train inducers and combiner function(s) concurrently

Framework: Data Fusion and Mixtures of Experts

- What Is A Weak Classifier?
 - One not guaranteed to do better than random guessing (1/number of classes)
 - Goal: combine multiple weak classifiers, get one at least as accurate as strongest
- Data Fusion
 - Intuitive idea
 - Multiple sources of data (sensors, domain experts, etc.)
 - Need to combine systematically, plausibly
 - Solution approaches
 - Control of intelligent agents: Kalman filtering
 - General: mixture estimation (sources of data = predictions to be combined)
 - Mixtures of Experts
 - Intuitive idea: "experts" express hypotheses (drawn from a hypothesis space)
 - Solution approach (next time)
 - Mixture model: estimate mixing coefficients
 - Hierarchical mixture models: divide-and-conquer estimation method

Combining Classifiers: Ensemble Averaging

- Intuitive idea
 - Combine experts (aka prediction algorithms, classifiers) using combiner function
 - Combiner may be weight vector (WM), vote (bagging), trained inducer (stacking)
- Weighted Majority (WM)
 - Weights each hypothesis in proportion to its training set accuracy
 - Use this weight in performance element (and on test set predictions)
 - Mistake bound for WM
- Bootstrap Aggregating (Bagging)
 - Voting system for collection of algorithms
 - Training set for each member: sampled with replacement
 - Works for unstable inducers (search for \(h \) sensitive to perturbation in \(D \))
- Stacked Generalization (aka Stacking)
 - Hierarchical system for combining inducers (ANNs or other inducers)
 - Training sets for "leaves": sampled with replacement; combiner: validation set
 - Single-Pass: Train Classification and Combiner Inducers Serially
 - Static Structures: Ignore Input Signal

Problem: Improving Weak Classifiers

- First Classifier
- Second Classifier
- Both Classifiers

Mixture Model

Principle:
Improving Weak Classifiers

Outside Reading
- Section 7.5, Mitchell
- Section 5, MLC++ manual, Kohavi and Sommerfield
- Lectures 21-22, CIS 798 (Fall, 1999)
- This Week’s Paper Review: “Bagging, Boosting, and C4.5”, J. R. Quinlan
- Combining Classifiers
 - Problem definition and motivation: improving accuracy in concept learning
 - General framework: collection of weak classifiers to be improved
- Examples of Combiners (Committee Machines)
 - Weighted Majority (WM), Bootstrap Aggregating (Bagging), Stacked Generalization (Stacking), Boosting the Margin
 - Mixtures of experts, Hierarchical Mixtures of Experts (HME)
- Committee Machines
 - Static structures: Ignore input signal
 - Dynamic structures (multi-pass): use input signal to improve classifiers

Combining Classifiers

- Intuitive idea
 - Combine experts (aka prediction algorithms, classifiers) using combiner function
 - Combiner may be weight vector (WM), vote (bagging), trained inducer (stacking)
- Weighted Majority (WM)
 - Weights each hypothesis in proportion to its training set accuracy
 - Use this weight in performance element (and on test set predictions)
 - Mistake bound for WM
- Bootstrap Aggregating (Bagging)
 - Voting system for collection of algorithms
 - Training set for each member: sampled with replacement
 - Works for unstable inducers (search for \(h \) sensitive to perturbation in \(D \))
- Stacked Generalization (aka Stacking)
 - Hierarchical system for combining inducers (ANNs or other inducers)
 - Training sets for "leaves": sampled with replacement; combiner: validation set
 - Single-Pass: Train Classification and Combiner Inducers Serially
 - Static Structures: Ignore Input Signal

Combining Classifiers

- Intuitive idea
 - Combine experts (aka prediction algorithms, classifiers) using combiner function
 - Combiner may be weight vector (WM), vote (bagging), trained inducer (stacking)
- Weighted Majority (WM)
 - Weights each hypothesis in proportion to its training set accuracy
 - Use this weight in performance element (and on test set predictions)
 - Mistake bound for WM
- Bootstrap Aggregating (Bagging)
 - Voting system for collection of algorithms
 - Training set for each member: sampled with replacement
 - Works for unstable inducers (search for \(h \) sensitive to perturbation in \(D \))
- Stacked Generalization (aka Stacking)
 - Hierarchical system for combining inducers (ANNs or other inducers)
 - Training sets for "leaves": sampled with replacement; combiner: validation set
 - Single-Pass: Train Classification and Combiner Inducers Serially
 - Static Structures: Ignore Input Signal
Weighted Majority:

- **Idea**
 - **Weight-Based Combiner**
 - Weighted votes: each prediction algorithm (classifier) h_i maps from $x \to h_i(x)$
 - Resulting in set of legal class labels
 - NB: as for Bayes Optimal Classifier, resulting predictor not necessarily in H

- **Intuitive Idea**
 - Collect votes from pool of prediction algorithms for each training example
 - Decrease weight associated with each algorithm that guessed wrong (by a multiplicative factor)
 - Combiner predicts weighted majority label

- **Performance Goals**
 - Improving training set accuracy
 - Want to combine weak classifiers
 - Want to bound number of mistakes in terms of minimum made by any one algorithm
 - Hope that this results in good generalization quality

Bagging:

- **Idea**
 - **Bootstrap Aggregating aka Bagging**
 - Application of bootstrap sampling
 - Given: set D containing m training examples
 - Create $\mathcal{S}(i)$ by drawing m examples at random with replacement from D
 - $\mathcal{S}(i)$ of size m: expected to leave out $0.37/m$ of examples from D
 - **Bagging**
 - Create a bootstrap samples $\mathcal{S}(1), \mathcal{S}(2), \ldots, \mathcal{S}(k)$
 - Train distinct inducers h_i to produce k classifiers
 - Classify new instance by classifier vote (equal weights)

- **Intuitive Idea**
 - “Two heads are better than one”
 - Produce multiple classifiers from one data set
 - NB: same inducer (multiple instantiations) or different inducers may be used
 - Differences in samples will “smooth out” sensitivity of L, H, O

Stacked Generalization:

- **Idea**
 - **Stacked Generalization aka Stacking**
 - Train multiple learners
 - Each uses subsample of D
 - May be ANN, decision tree, etc.
 - Train combiner on validation segment
 - See [Wolpert, 1992; Bishop, 1995]

- **Intuitive Idea**
 - Train inducers and combiner function(s) concurrently
 - Learn how to divide and balance learning problem across multiple inducers
 - Framework: mixture estimation

Single Pass Combiners

- **Combining Classifiers**
 - Problem definition and motivation: improving accuracy in concept learning
 - General framework: collection of weak classifiers to be improved (data fusion)
- **Weighted Majority**
 - Weighting system for collection of algorithms
 - Weights each algorithm in proportion to its training set accuracy
 - Use this weight in performance element (and on test set predictions)
 - Mistake bound for WM
- **Bootstrap Aggregating** (Bagging)
 - Voting system for collection of algorithms
 - Training set for each member: sampled with replacement
 - Works for unstable inducers
- **Stacked Generalization** (aka Stacking)
 - Hierarchical system for combining inducers (ANNs or other inducers)
 - Training sets for “leaves”: sampled with replacement; combiner: validation set
- **Next:** Boosting the Margin, Hierarchical Mixtures of Experts

Boosting:

- **Idea**
 - **Intuitive Idea**
 - Another type of static committee machine can be used to improve any inducer
 - Learn set of classifiers from D, but reweight examples to emphasize misclassified
 - **Final classifier:** weighted combination of classifiers
 - Different from Ensemble Averaging
 - WM: all inducers trained on same D
 - Bagging, stacking: training/validation partitions, i.e., subsamples $\mathcal{S}(i)$ of D
 - **Boosting:** data sampled according to different distributions
 - **Problem Definition**
 - Given: collection of multiple inducers, large data set or example stream
 - **Solution Approaches**
 - Filtering: use weak inducers in cascade to filter examples for downstream ones
 - Resampling: reuse data from D by subsampling (don’t need huge or “infinite” D
 - Reweighting: reuse D, but measure error over weighted x
Mixture Models: Procedure

- Algorithm Combiner-Mixture-Model (D, L, Activation, k)
 - m = D.size
 - FOR j = 1 TO k DO // initialization
 w[j] = 1
 - UNTIL the termination condition is met, DO
 - FOR j = 1 TO k DO
 - P[j] = L[j].Update-Inducer (D) // single training step for L[j]
 - FOR i = 1 TO m DO
 Sum[i] = 0
 - FOR j = 1 TO k DO
 Sum[i] += P[j](D[i])
 - Net[i] = Compute-Activation (Sum[i]) // compute g[i] = Net[i]
 - FOR i = 1 TO m DO
 w[i] = Update-Weights (w[i], Net[i], D[i])
 - RETURN (Make-Predictor (P, w))

- Algorithm Combiner-HME (D, L, Activation, Level, k, Classes)
 - m = D.size
 - FOR j = 1 TO k DO // initialization
 w[j] = 1
 - UNTIL the termination condition is met DO
 - IF Level > 1 THEN
 - FOR j = 1 TO k DO
 - P[j] = Combiner-HME (D, L[j], Level - 1, k, Classes)
 - ELSE
 - FOR j = 1 TO k DO
 - P[j] = L[j].Update-Inducer (D)
 - FOR i = 1 TO m DO
 Sum[i] = 0
 - FOR j = 1 TO m DO
 Sum[i] += P[j](D[i])
 - Net[i] = Compute-Activation (Sum[i]) // compute g[i] = Net[i]
 - FOR i = 1 TO Classes DO
 w[i] = Update-Weights (w[i], Net[i], D[i])
 - RETURN (Make-Predictor (P, w))

Mixture Models: Idea

- Intuitive Idea
 - Integrate knowledge from multiple experts (or data from multiple sensors)
 - Collection of inducers organized into committee machine (e.g., modular ANN)
 - Dynamic structure: take input signal into account

- References
 - [Bishop, 1995] (Sections 2.7, 9.7)
 - [Haykin, 1999] (Chapter 7.6)

- Problem Definition
 - Given: collection of inducers ("experts") D, data set X
 - Perform: supervised learning using inducers and self-organization of experts
 - Return: committee machine with trained gating network (combiner inducer)

- Solution Approach
 - Let combiner inducer be generalized linear model (e.g., threshold gate)
 - Activation functions: linear combination, vote, "smoothed" vote (softmax)

- Possible Modifications
 - † Batch (as opposed to online) updates: lift Update-Weights out of outer FOR loop
 - † Classification learning (versus concept learning): multiple y values
 - † Arrange gating networks (combiner inducers) in hierarchy (HME)

- Algorithm Combiner-Mixture-Model (D, L, Activation, k)
 - m = D.size
 - FOR j = 1 TO k DO // initialization
 - w[j] = 1
 - UNTIL the termination condition is met, DO
 - FOR j = 1 TO k DO
 - P[j] = L[j].Update-Inducer (D) // single training step for L[j]
 - FOR i = 1 TO m DO
 Sum[i] = 0
 - FOR j = 1 TO k DO
 Sum[i] += P[j](D[i])
 - Net[i] = Compute-Activation (Sum[i]) // compute g[i] = Net[i]
 - FOR i = 1 TO m DO
 w[i] = Update-Weights (w[i], Net[i], D[i])
 - RETURN (Make-Predictor (P, w))
Hierarchical Mixture of Experts (HME): Properties

- **Advantages**
 - Benefits of ME: base case is single level of expert and gating networks
 - More combiner inducers ⇒ more capability to decompose complex problems

- **Views of HME**
 - Expresses divide-and-conquer strategy
 - Problem is distributed across subtrees "on the fly" by combiner inducers
 - Quality: data fusion ⇒ problem redistribution
 - Recursive decomposition: until good fit found to "local" structure of D
 - Implementation: a-level decision tree
 - Mixture of experts: 1-level decision tree (decision stump)
 - Information preservation compared to traditional (hard) decision tree
 - Dynamics of HME improves on greedy (high-commitment) strategy of decision tree induction

Training Methods for Hierarchical Mixture of Experts (HME)

- **Stochastic Gradient Ascent**
 - Maximizes log-likelihood function $L(\theta) = \log P(D | \theta)$
 - Compute
 $$\frac{\partial L}{\partial w_i} = \frac{1}{n} \sum_{j=1}^{n} \left[y_j \cdot h(x_j; \theta) - \hat{y}_j \right]$$
 - Finds MAP values
 - Expert network (leaf) weights w_2
 - Gating network (interior node) weights α_j at lower level (a_j), upper level (a_{ij})

- **Expectation-Maximization (EM) Algorithm**
 - Recall definition
 - Goal: maximize incomplete-data log-likelihood function $L(\theta) = \log P(D | \theta)$
 - Estimation step: calculate E[unobserved variables] $\hat{\theta}$, assuming current θ
 - Maximization step: update θ to maximize $L(\theta | \hat{\theta})$, D or all variables

Methods for Combining Classifiers: Committee Machines

- **Framework**
 - Think of collection of trained inducers as committee of experts
 - Each produces predictions given input $(x(D_{train}), x_{new}, x)$

- **Types of Committee Machines**
 - Static structures: based only on x coming out of local inducers
 - Single-pass, same data or independent subsamples: WM, bagging, stacking
 - Cascade training: AdaBoost
 - Iterative reweighting: boosting by reweighting
 - Dynamic structures: take x into account
 - Mixture models (mixtures of experts aka ME): one combiner (gating) level
 - Hierarchical Mixture of Experts (HME): multiple combiner (gating) levels
 - Specialist-B catalyst (SB) networks: partitions of x given to combiners

Terminology [1]: Single-Pass Combiners

- **Combining Classifiers**
 - Weak classifiers: not guaranteed to do better than random guessing
 - Combining functions: f prediction vector \rightarrow instance \rightarrow prediction

- **Single-Pass Combiners**
 - Weighted Majority (WM)
 - Weights prediction of each inducer according to its training-set accuracy
 - Mistake bound: maximum number of mistakes before converging to correct h
 - Incrementality: ability to update parameters without complete retraining
 - Bootstrap Aggregating (aka Bagging)
 - Takes vote among multiple inducers trained on different samples of D
 - Subsampling: drawing one sample from another ($D = \tilde{D}$)
 - Unstable inducer: small change to D causes large change in h
 - Stacked Generalization (aka Stacking)
 - Hierarchical combiner can apply recursively to re-stack
 - Trains combiner inducer using validation set

Terminology [2]: Static and Dynamic Mixtures

- **Committee Machines aka Combiners**
 - Ensemble averaging
 - Single-pass, separately trained inducers, common input
 - Individual outputs combined to get scalar output (e.g., linear combination)
 - Boosting the margin: separately trained inducers, different input distributions
 - Filtering: feed examples to trained inducer (weak classifiers), pass on to next classifier if conflict encountered (ensemble model)
 - Resampling: aka subsampling (drawing of fixed size m) resampled from D
 - Reweighting: fixed size S_i containing weighted examples for inducer

- **Dynamic Structures**
 - Mixture of experts: training in combiner inducer (aka gating network)
 - Hierarchical mixtures of experts: hierarchy of inducers, combiners

- **Mixture Models aka Mixture of Experts (ME)**
 - Expert (classification) gating (combiner) inducers (modules, "networks")
 - Hierarchical Mixture of Experts (HME): multiple combiner (gating) levels

Summary Points

- **Committee Machines aka Combiners**
 - Ensemble averaging
 - For improving weak (esp. unstable) classifiers
 - E.g., weighted majority, bagging, stacking
 - Boosting the margin
 - Improve performance of any inducer: weight examples to emphasize errors
 - Variants: filtering (aka consensus), reweighting (aka subsampling), reweighting

- **Dynamic Structures (Multi-Pass)**
 - Mixture of experts: training in combiner inducer (aka gating network)
 - Hierarchical mixtures of experts: hierarchy of inducers, combiners

- **Mixture Model (aka Mixture of Experts)**
 - Estimation of mixture coefficients (i.e., weights)
 - Hierarchical Mixtures of Experts (HME): multiple combiner (gating) levels

Next Topic: Reasoning under Uncertainty (Probabilistic KDD)