Uncertain Reasoning and Data Engineering: Overview

Wednesday, March 1, 2000

William H. Hsu
Department of Computing and Information Sciences, KSU

Readings:
Chapter 15, Russell and Norvig

“Bayesian Networks Without Tears”, Charniak

Graphical Models of Probability Distributions

• Idea
 - Want: model that can be used to perform inference
 - Desired properties
 - Ability to represent functional, logical, stochastic relationships
 - Express uncertainty
 - Observe the laws of probability
 - Tractable inference when possible
 - Can be learned from data

• Additional Desiderata
 - Ability to incorporate knowledge
 - Knowledge acquisition and elicitation: in format familiar to domain experts
 - Language of subjective probabilities and relative probabilities
 - Support decision making
 - Represent utilities (cost or value of information, state)
 - Probability theory + utility theory + decision theory
 - Ability to reason over time (temporal models)

Bayesian Belief Networks (BBNS): Definition

• Conditional Independence
 - X is conditionally independent (CI) from Y given Z (sometimes written X ⊥ Y | Z) if
 \[P(X | Y, Z) = P(X | Z) \]
 - For all values of X, Y, and Z

• Bayesian Network
 - Directed graph model of conditional dependence assertions (or CI assumptions)
 - Vertices (nodes): denote events (each a random variable)
 - Edges (arcs, links): denote conditional dependencies

• General Product (Chain) Rule for BBNS

• Example (“Sprinkler” BBN)

Unsupervised Learning and Conditional Independence

• Given: (n + 1)-Tuples
 - No notion of instance variable or label
 - After seeing some examples, want to know something about the domain
 - Correlations among variables
 - Probability of certain events
 - Other properties

• Want to Learn: Most Likely Model that Generates Observed Data
 - In general, a very hard problem
 - Under certain assumptions, have shown that we can do it

• Assumption: Causal Markovity
 - Conditional independence among “effects”, given “cause”
 - When is the assumption appropriate?

• Structure Learning
 - Can we learn more general probability distributions?
 - Example: automatic speech recognition (ASR), natural language, etc.

Bayesian Belief Networks: Properties

• Conditional Independence
 - Variable (node): conditionally independent of non-descendants given parents
 - Example

 \[
 P(X_1, X_2, \ldots, X_n) = \prod \left(P(X_i | \text{parents}(X_i)) \right)
 \]

• Bayesian Network: Probabilistic Semantics
 - Node: variable
 - Edge: one axis
 - Descendant/Non Descendant
 - Result: chain rule for probabilistic inference
 - Edge: one axis of a conditional probability table (CPT)

Lecture Outline

• Readings: 6.11, Mitchell: Chapter 15, Russell and Norvig: Charniak Tutorial

• Suggested Reference: Lectures 9-13, CIS 786 (Fall, 1999)

• This Week’s Review: “A Theory of Inferred Causation”, Pearl and Verma

• Graphical Models of Probability
 - Bayesian networks: introduction
 - Definition and basic principles
 - Conditional independence and causal Markovity
 - Inference and learning using Bayesian networks
 - Acquiring and applying distributions (conditional probability tables)
 - Learning tree dependent distributions and polytrees

• Learning Distributions for Networks with Specified Structure
 - Gradient learning
 - Maximum weight spanning tree (MWST) algorithm for tree-structured networks

• Reasoning under Uncertainty: Applications and Augmented Models

• Next Lecture: (More on) Learning Bayesian Network Structure

Overview

• Knowledge acquisition
 - Can be learned from data

• Tractable inference when possible

• Express uncertainty

• Additional Desiderata
 - Ability to reason under time (temporal models)

Graphical Models of Probability Distributions

• Idea
 - Want: model that can be used to perform inference

• Desired properties
 - Ability to represent functional, logical, stochastic relationships

• Express uncertainty
 - Observe the laws of probability

• Tractable inference when possible

• Can be learned from data
Bayesian Belief Networks: Inference

- **Problem Definition**
 - Given:
 - Bayesian network with specified CPTs
 - Observed values for some nodes in network
 - Return: inferred (probabilities of) values for query node(s)

- **Implementation**
 - Bayesian network contains all information needed for this inference
 - If only one variable with unknown value, easy to infer it
 - In general case, problem is intractable (NP-hard: reduction to 3-CNF-SAT?)
 - In practice, can succeed in many cases using different methods
 - Exact inference: work well for some network structures
 - Monte Carlo: “simulate” network to randomly calculate approximate solutions
 - Key machine learning issues
 - Feasible to select this information or learn it from data?
 - How to learn structure that makes inference more tractable?

Tree Dependent Distributions

- **Polytrees**
 - Also singly-connected Bayesian networks
 - Definition: a Bayesian network with no undirected loops
 - Idea: restrict distributions (CPTs) to single nodes
 - Theorem: inference in singly-connected BBN requires linear time
 - Linear in network size, including CPT sizes
 - Much better than for unrestricted (multiply-connected) BBNs

- **Tree Dependent Distributions**
 - Further restriction of polytrees: every node has at one parent
 - Now only need to keep 1 prior, P(root), and n - 1 CPTs (1 per node)
 - All CPTs are 2-dimensional: P(y | parent)
 - Indepedence Assumptions
 - As for general BBN: x is independent of non-descendants given (single) parent z
 - Very strong assumption (applies in some domains but not most)

Inference in Trees

- **Inference in Tree-Structured BBNs (“Trees”)**
 - Generalization of Naive Bayes to model of tree dependent distribution
 - Given: tree T with all associated probabilities (CPTs)
 - Evaluate: probability of a specified event, P(x)

- **Inference Procedure for Polytrees**
 - Recursively traverse tree
 - Breadth-first, source(s) to sink(s)
 - Stop when query value P(x) is known
 - Perform inference at each node
 - \[P(x) = \frac{\prod P(y_i | y_{parents}(y_i))}{\prod P(y_i | y_{parents}(y_i))} \]
 - NB: for trees, proceed root to leaves (e.g., breadth-first or depth-first)
 - Simple application of Bayes’s rule (more efficient algorithms exist)

Learning Distributions: Objectives

- **Learning The Target Distribution**
 - What is the target distribution?
 - Can’t use the “true” target distribution
 - Case in point: suppose target distribution was \(P_t \) (collected over 20 examples)
 - Using Naive Bayes would not produce an \(P(x) \) close to the MAP/ML estimate
 - Relating CI assumptions: expensive
 - MLE becomes intractable; BOC approximation, highly intractable
 - Instead, should make judicious CI assumptions
 - As before, goal is generalization
 - Given D (e.g., \(D_{101, 101, 1000} \))
 - Would like to know \(P(t|x) \) or \(P(t|x) = P_t \)
 - Several Variants
 - Known or unknown structure
 - Training examples may have missing values
 - Known structure and no missing values: as easy as training Naive Bayes

Learning Bayesian Networks: Partial Observability

- **Suppose Structure Known, Variables Partially Observable**
 - Example
 - Can observe ForestFire, Storm, BusTourGroup, Thunder
 - Similar to training artificial neural net with hidden units
 - Causes: Storm, BusTourGroup
 - Observable effects: ForestFire, Thunder
 - Intermediate variables: Lightning, Campfire
 - Learning Algorithm
 - Can use gradient learning (as for ANNs)
 - Converge to network \(h(x) \) that (locally) maximizes \(P(D | h) \)
 - Analogy: Medical Diagnosis
 - Causes: diseases or diagnostic findings
 - Intermediate: hidden causes or hypothetical inferences (e.g., heart rate)
 - Observables: measurements (e.g., from medical instrumentation)

Learning Distributions: Learning Distributions

- **Algorithm Train-BN (D)**
 - Let \(w_{ij} \) denote one entry in the CPT for variable \(Y_i \) in the network
 - \(w_{ij} = P(Y_i | y_j) \) parents(\(y_j \) = \{\text{the list of values}\})
 - e.g., if \(Y_i = \text{Campfire} \), then (for example) \(w_{ij} = \text{<Storm} = T, \text{BusTourGroup} = F> \)
 - WHILE termination condition not met DO
 - perform gradient ascent
 - Update all CPT entries \(w_{ij} \) using training data \(D \)
 - Renormalize \(w_{ij} \) to assure invariants:
 \[\sum_j w_{ij} = 1, 0 \leq w_{ij} \leq 1 \]

- **Applying Train-BN**
 - Learns CPT values
 - Useful in case of known structure
 - Next: learning structure from data
Tree Dependent Distributions: Learning The Structure

- Problem Definition: Find Most Likely \(T \) Given \(D \)
- Brute Force Algorithm
 - FOR each tree \(T \) DO
 - Compute the likelihood of \(T \):
 \[
 PT/D \approx \text{arg max } P(D|T) = \arg \max \prod_{x \in X} P(x, \text{parental}(x) | T)
 \]
 - RETURN the maximal \(T \)
- Is This Practical?
 - Typically no… (H analogous to that of ANN weight space)
 - What can we do about it?
- Solution Approaches
 - Use criterion / scoring function: Kullback-Leibler (K-L) distance
 \[
 D(P(T)||P(x)) = \sum_{x \in X} P(x) \log \left(\frac{P(x)}{P(x|T)} \right)
 \]
 - Measures how well a distribution \(P \) approximates a distribution \(P' \)
 - aka K-L divergence, aka cross-entropy, aka relative entropy

Tree Dependent Distributions: Maximum Weight Spanning Tree (MWST)

- Input: \(m \) Measurements (n-Tuples), i.i.d. – \(P \)
- Algorithm Learn-Tree-Structure (D)
 - FOR each variable \(X \) DO estimate \(P(x) \) // binary variables: \(n \) numbers
 - FOR each pair \((X, Y) \) DO estimate \(P(x, y) \) // binary variables: \(m \) numbers
 - FOR each pair \(DO \) compute the mutual information (measuring the information \(X \) gives about \(Y \) with respect to this empirical distribution)
 \[
 I(X;Y) = \sum_{x,y} P(x,y) \log \left(\frac{P(x,y)}{P(x)P(y)} \right)
 \]
 - Build a complete undirected graph with all the variables as vertices
 - Let \(\lambda(x,y) \) be the weight of edge \((X, Y) \)
 - Build a Maximum Weight Spanning Tree (MWST)
 - Transform the resulting undirected tree into a directed tree (choose a root, and set the direction of all edges away from it)
 - Place the corresponding CPTs on the edges (gradient learning)
 - RETURN: a tree-structured BBN with CPT values

Related Work In Bayesian Networks

- BBN Variants, Issues Not Covered Yet
 - Temporal models
 - Markov Decision Processes (MDPs)
 - Partially Observable Markov Decision Processes (POMDPs)
 - Useful in reinforcement learning
 - Decision theoretic model
 - Augments BBN with utility values and decision nodes
 - Unsupervised learning (EM, AutoClass)
 - Feature (subset) selection: finding relevant attributes
 - Current Research Topics Not Addressed In This Course
 - Hidden variables (introduction of new variables not observed in data)
 - Incremental BBN learning: modifying network structure online (“on the fly”)
 - Structure learning for stochastic processes
 - Noisy-OR Bayesian networks: another simplifying restriction

Summary Points

- Graphical Models of Probability
 - Bayesian networks; introduction
 - Definition and basic principles
 - Conditional independence (causal Markovity) assumptions, tradeoffs
- Inference and learning using Bayesian networks
 - Inference and learning using Bayesian networks
 - Acquiring and applying CPTs
 - Searching the space of trees: max likelihood
 - Examples: Sprinkler, Cancer, Forest-Fire, generic tree learning
- CPT Learning; Gradient Algorithm (Train-BN)
 - Structure Learning in Trees: MWST Algorithm Learn-Tree-Structure
 - Reasoning under Uncertainty: Applications and Augmented Models
- Some Material From: http://robotics.Stanford.EDU/~koller
 - Next Week: Read Heckerman Tutorial
 - Next Class: Presentation - “In Defense of Probability”, Cheesman