

Chapter 15, Russell and Norvig Section 6.11, Mitchell "Bayesian Networks Without Tears", Charniak

15

CIS 830: Advanced Topics in Artificial Intelligence

Bayesian Belief Networks: Inference

Problem Definition

- Given Bayesian network with specified CPTs
 - Observed values for some nodes in network
- Return: inferred (probabilities of) values for <u>query</u> node(s)
- Implementation
 - Bayesian network contains all information needed for this inference · If only one variable with unknown value, easy to infer it
 - In general case, problem is intractable (NP-hard: reduction to 3-CNF-SAT)
 - In practice, can succeed in many cases using different methods · Exact inference: work well for some network structures
 - Monte Carlo: "simulate" network to randomly calculate approximate solutions Key machine learning issues

6

- Feasible to <u>elicit</u> this information or <u>learn it from data</u>?
- How to learn structure that makes inference more tractable?

CIS 830: Advanced Topics in Artificial Intelligence

Tree Dependent Distributions Polytrees aka singly-connected Bayesian networks Definition: a Bayesian network with no undirected loops Idea: restrict distributions (CPTs) to single nodes Theorem: inference in singly-connected BBN requires linear Linear in network size, including CPT sizes Much better than for unrestricted (multiply-connected) BBNs Tree Dependent Distributions Further restriction of polytrees: every node has at one parent Now only need to keep 1 prior, P(root), and n - 1 CPTs (1 per node) All CPTs are 2-dimensional: P(child | parent) *h ≥ Independence Assumptions ് As for general BBN: x is independent of non-descendants given (single) parent z Very strong assumption (applies in some domains but not most) 1 CIS 830: Advanced Topics in Artificial Intelligence

Summary Points

	Graphical Models of Probability
<u>ausal networks</u>	 Bayesian networks: introduction
	Definition and basic principles
	Conditional independence (causal Markovity) assumptions, tradeol
tables (CPTs)	 Inference and learning using Bayesian networks
<u>ructured</u> BBNs (<u>trees</u>)	Acquiring and applying CPTs
	 Searching the space of trees: max likelihood
	• Examples: Sprinkler, Cancer, Forest-Fire, generic tree learning
	CPT Learning: Gradient Algorithm Train-BN
	Structure Learning in Trees: MWST Algorithm Learn-Tree-Structur
	Reasoning under Uncertainty: Applications and Augmented Model
	Some Material From: <u>http://robotics.Stanford.EDU/~koller</u>
	Next Week: Read Heckerman Tutorial
alative entrony)	

(SI

- Next Class: Presentation "In Defense of Probability", Cheeseman
- CIS 830: Advanced Topics in Artificial Intelligence Department of

Graphical Models of Probability

<u>Bayesian belief networks (BBNs)</u> aka belief networks aka causal networks

Terminology

- Conditional independence, <u>causal Markovity</u>
- Inference and learning using Bayesian networks
- Representation of distributions: <u>c</u>onditional <u>probability</u> <u>tables</u> (<u>CPTs</u>)
- Learning polytrees (singly-connected BBNs) and tree-BBN Inference
- Type of probabilistic reasoning
- Finds answer to query about P(x) aka QA
- Gradient Learning in BBNs
- Known structure
- Partial observability
- Structure Learning for Trees
- Kullback-Leibler distance (K-L divergence, cross-entropy
- <u>Maximum weight spanning tree (MWST</u>) algorithm

CIS 830: Advanced Topics in Artificial Intelligence

15