

Lecture Outline

- Readings: 6.11, Mitchell; Chapter 15, Russell and Norvig; Charniak Tutorial
- Suggested Reference: Lectures 9-13, CIS 798 (Fall, 1999)
- This Week's Review: "A Theory of Inferred Causation", Pearl and Verma

Graphical Models of Probability

- Bayesian networks: introduction
- Definition and basic principles
- Conditional independence and causal Markovity
- Inference and learning using Bayesian networks
- Acquiring and applying distributions (conditional probability tables)
- Learning tree dependent distributions and polytrees

Learning Distributions for Networks with Specified Structure

- Gradient learning
- Maximum weight spanning tree (MWST) algorithm for tree-structured networks
- Reasoning under Uncertainty: Applications and Augmented Models
- Next Lecture: (More on) Learning Bayesian Network Structure

CIS 830: Advanced Topics in Artificial Intelligence

Unsupervised Learning and Conditional Independence
- Given: $(n+1)$-Tuples $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ - No notion of instance variable or label - After seeing some examples, want to know something about the domain - Correlations among variables - Probability of certain events - Other properties - Want to Learn: Most Likely Model that Generates Observed Data - In general, a very hard problem - Under certain assumptions, have shown that we can do it - Assumption: Causal Markovity - Conditional independence among "effects", given "cause" - When is the assumption appropriate? - Can it be relaxed? - Structure Learning - Can we learn more general probability distributions? - Examples: automatic speech recognition (ASR), natural language, etc.
CIS 830: Advanced Topics in Artificial Intelligence

Inference in Trees

- Inference in Tree-Structured BBNs ("Trees")

Generalization of Naïve Bayes to model of tree dependent distribution
Given: tree T with all associated probabilities (CPTs)
Evaluate: probability of a specified event, $P(x)$
Inference Procedure for Polytrees

- Recursively traverse tree
- Breadth-first, source(s) to sink(s)
- Stop when query value $P(x)$ is known
- Perform inference at each node

$$
P(x)=P(X=x)
$$

$$
=\sum_{y_{1}, y_{2}} \boldsymbol{P}\left(x \mid y_{1}, \boldsymbol{y}_{2}\right) \cdot \boldsymbol{P}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)
$$

$$
=\sum_{y_{1}, y_{2}} P\left(x / y_{1}, y_{2}\right) \cdot P\left(y_{1}\right) \cdot P\left(y_{2}\right)
$$

- NB: for trees, proceed root to leaves (e.g., breadth-first or depth-first) Simple application of Bayes's rule (more efficient algorithms exist)

CIS 830: Advanced Topics in Artificial Intelligence

Learning Bayesian Networks: Partial Observability
Suppose Structure Known, Variables Partially Observable

- Example
- Can observe ForestFire, Storm, BusTourGroup, Thunder
- Can't observe Lightning, Campfire
- Similar to training artificial neural net with hidden units - Causes: Storm, BusTourGroup
- Observable effects: ForestFire, Thunder

Intermediate variables: Lightning, Campfire Learning Algorithm

- Can use gradient learning (as for ANNs)
- Converge to network h that (locally) maximizes $P(D \mid h)$

Analogy: Medical Diagnosis

- Causes: diseases or diagnostic findings
- Intermediates: hidden causes or hypothetical inferences (e.g., heart rate) Observables: measurements (e.g., from medical instrumentation)

CIS 830: Advanced Topics in Artificial Inteligence

Learning Distributions:

Objectives

- Learning The Target Distribution
- What is the target distribution?
- Can't use "the" target distribution
- Case in point: suppose target distribution was P_{1} (collected over 20 examples)
- Using Naïve Bayes would not produce an h close to the MAP/ML estimate
- Relaxing Cl assumptions: expensive
. MLE becomes intractable; BOC approximation, highly intractable
- Instead, should make judicious Cl assumptions
- As before, goal is generalization
- Given D (e.g., $\{1011,1001,0100\}$)
- Would like to know $P(1111)$ or $P\left(11^{* *}\right) \equiv P\left(x_{1}=1, x_{2}=1\right)$

Several Variants

- Known or unknown structure
- Training examples may have missing values
- Known structure and no missing values: as easy as training Naïve Bayes

CIS 830: Advanced Topics in Artificial Intelligenc

Tree Dependent Distributions: Learning The Structure

- Problem Definition: Find Most Likely T Given D
- Brute Force Algorithm
- FOR each tree TDO

Compute the likelihood of T :

$$
P(T / D) \propto P(D / T)=\arg \max _{T \in H} \prod_{\left(x_{1}, x_{2}, \ldots, x_{n} \leqslant D\right.} \prod_{i} P_{T}\left(x_{i} / \text { parents }\left(x_{i}\right)\right)
$$

- RETURN the maximal T

Is This Practical?

- Typically not... (|H| analogous to that of ANN weight space)

What can we do about it?
Solution Approaches

- Use criterion (scoring function): Kullback-Leibler (K-L) distance

$$
\mathrm{D}\left(P \| P^{\prime}\right) \equiv \sum_{x} P(x) \lg \frac{P(x)}{P^{\prime}(x)}
$$

- Measures how well a distribution P approximates a distribution P
aka K-L divergence, aka cross-entropy, aka relative entropy
CIS 830: Advanced Topics in Artificial Intelligence

Applications of Bayesian Networks
 Terminology

- Graphical Models of Probability
- Bayesian belief networks (BBNs) aka belief networks aka causal networks
- Conditional independence, causal Markovity
- Inference and learning using Bayesian networks
- Representation of distributions: conditional probability tables (CPTs)
- Learning polytrees (singly-connected BBNs) and tree-structured BBNs (trees)

BBN Inference
Type of probabilistic reasoning

- Finds answer to query about $P(x)$ - aka QA
- Gradient Learning in BBNs
- Known structure

Partial observability

- Structure Learning for Trees

Kullback-Leibler distance (K-L divergence, cross-entropy, relative entropy) Maximum weight spanning tree (MWST) algorithm

CIS 830: Advanced Topics in Artificial Intelligence

Related Work in Bayesian Networks

- BBN Variants, Issues Not Covered Yet
- Temporal models
- Markov Decision Processes (MDPs)
- Partially Observable Markov Decision Processes (POMDPs)
- Useful in reinforcement learning
- Influence diagrams
- Decision theoretic model
- Augments BBN with utility values and decision nodes
- Unsupervised learning (EM, AutoClass)
- Feature (subset) selection: finding relevant attributes
- Current Research Topics Not Addressed in This Course
- Hidden variables (introduction of new variables not observed in data)
- Incremental BBN learning: modifying network structure online ("on the fly")
- Structure learning for stochastic processes
- Noisy-OR Bayesian networks: another simplifying restriction

CIS 830: Advanced Topics in Artificial Intelligence

Summary Points
- Graphical Models of Probability
- Bayesian networks: introduction
\quad - Definition and basic principles
\quad - Conditional independence (causal Markovity) assumptions, tradeoffs
\quad Inference and learning using Bayesian networks
\quad - Acquiring and applying CPTs
\quad - Examples: Sprinkler, Cancer, Forest-Fire, generic tree learning
- CPT Learning: Gradient Algorithm Train-BN
- Structure Learning in Trees: MWST Algorithm Learn-Tree-Structure
- Reasoning under Uncertainty: Applications and Augmented Models
- Some Material From: http://robotics.Stanford.EDU/~koller
- Next Week: Read Heckerman Tutorial
- Next Class: Presentation - "In Defense of Probability", Cheeseman
CIS 830: Advanced Topics in Artificial Intelligence

