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Readings:
Chapter 15, Russell and Norvig

Section 6.11, Mitchell
“Bayesian Networks Without Tears”, Charniak

Uncertain Reasoning and Data Engineering:
Overview
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• Readings: 6.11, Mitchell; Chapter 15, Russell and Norvig; Charniak Tutorial

• Suggested Reference: Lectures 9-13, CIS 798 (Fall, 1999)

• This Week’s Review: “A Theory of Inferred Causation”, Pearl and Verma

• Graphical Models of Probability

– Bayesian networks: introduction

• Definition and basic principles

• Conditional independence and causal Markovity

– Inference and learning using Bayesian networks

• Acquiring and applying distributions (conditional probability tables)

• Learning tree dependent distributions and polytrees

• Learning Distributions for Networks with Specified Structure

– Gradient learning

– Maximum weight spanning tree (MWST) algorithm for tree-structured networks

• Reasoning under Uncertainty: Applications and Augmented Models

• Next Lecture: (More on) Learning Bayesian Network Structure

Lecture OutlineLecture Outline
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• Idea
– Want: model that can be used to perform inference

– Desired properties

• Ability to represent functional, logical, stochastic relationships

• Express uncertainty

• Observe the laws of probability

• Tractable inference when possible

• Can be learned from data

• Additional Desiderata
– Ability to incorporate knowledge

• Knowledge acquisition and elicitation: in format familiar to domain experts

• Language of subjective probabilities and relative probabilities

– Support decision making

• Represent utilities (cost or value of information, state)

• Probability theory + utility theory = decision theory

– Ability to reason over time (temporal models)

Graphical ModelsGraphical Models
of Probability Distributionsof Probability Distributions
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Unsupervised LearningUnsupervised Learning
and Conditional Independenceand Conditional Independence

• Given: (n + 1)-Tuples (x1, x2, …, xn, xn+1)
– No notion of instance variable or label

– After seeing some examples, want to know something about the domain

• Correlations among variables

• Probability of certain events

• Other properties

• Want to Learn: Most Likely Model that Generates Observed Data
– In general, a very hard problem

– Under certain assumptions, have shown that we can do it

• Assumption: Causal Markovity
– Conditional independence among “effects”, given “cause”

– When is the assumption appropriate?

– Can it be relaxed?

• Structure Learning
– Can we learn more general probability distributions?

– Examples: automatic speech recognition (ASR), natural language, etc.
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Bayesian Belief Networks (BBNS):Bayesian Belief Networks (BBNS):
DefinitionDefinition

X1

X2

X3

X4

Season:
Spring
Summer
Fall
Winter

Sprinkler: On, Off

Rain: None, Drizzle, Steady, Downpour

Ground-Moisture:
Wet, Dry

X5

Ground-State:
Slippery, Not-Slippery

P(Summer, Off, Drizzle, Wet, Not-Slippery) = P(S) · P(O | S) · P(D | S) · P(W | O, D) · P(N | W) 

• Conditional Independence
– X is conditionally independent (CI) from Y given Z (sometimes written X ⊥ Y | Z) iff

P(X | Y, Z) = P(X | Z) for all values of X, Y, and Z

– Example: P(Thunder | Rain, Lightning) = P(Thunder | Lightning) ⇔ T ⊥ R | L

• Bayesian Network
– Directed graph model of conditional dependence assertions (or CI assumptions)

– Vertices (nodes): denote events (each a random variable)

– Edges (arcs, links): denote conditional dependencies

• General Product (Chain) Rule for BBNs

• Example (“Sprinkler” BBN)

( ) ( )( )∏
=

=
n

i
iin21 Xparents |XPX , ,X,XP

1

K

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

Bayesian Belief Networks:Bayesian Belief Networks:
PropertiesProperties

• Conditional Independence

– Variable (node): conditionally independent of non-descendants given parents

– Example

– Result: chain rule for probabilistic inference

• Bayesian Network: Probabilistic Semantics

– Node: variable

– Edge: one axis of a conditional probability table (CPT)
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Bayesian Belief Networks:Bayesian Belief Networks:
InferenceInference

• Problem Definition

– Given

• Bayesian network with specified CPTs

• Observed values for some nodes in network

– Return: inferred (probabilities of) values for query node(s)

• Implementation

– Bayesian network contains all information needed for this inference

• If only one variable with unknown value, easy to infer it

• In general case, problem is intractable (NP-hard: reduction to 3-CNF-SAT)

– In practice, can succeed in many cases using different methods

• Exact inference: work well for some network structures

• Monte Carlo: “simulate” network to randomly calculate approximate solutions

– Key machine learning issues

• Feasible to elicit this information or learn it from data?

• How to learn structure that makes inference more tractable?
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• Polytrees

– aka singly-connected Bayesian networks

– Definition: a Bayesian network with no undirected loops

– Idea: restrict distributions (CPTs) to single nodes

– Theorem: inference in singly-connected BBN requires linear time

• Linear in network size, including CPT sizes

• Much better than for unrestricted (multiply-connected) BBNs

• Tree Dependent Distributions

– Further restriction of polytrees: every node has at one parent

– Now only need to keep 1 prior, P(root), and n - 1 CPTs (1 per node)

– All CPTs are 2-dimensional: P(child | parent)

• Independence Assumptions

– As for general BBN: x is independent of non-descendants given (single) parent z

– Very strong assumption (applies in some domains but not most)

Tree Dependent DistributionsTree Dependent Distributions

x

z

root
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Inference in TreesInference in Trees

• Inference in Tree-Structured BBNs (“Trees”)

– Generalization of Naïve Bayes to model of tree dependent distribution

– Given: tree T with all associated probabilities (CPTs)

– Evaluate: probability of a specified event, P(x)

• Inference Procedure for Polytrees

– Recursively traverse tree

• Breadth-first, source(s) to sink(s)

• Stop when query value P(x) is known

– Perform inference at each node

– NB: for trees, proceed root to leaves (e.g., breadth-first or depth-first)

– Simple application of Bayes’s rule (more efficient algorithms exist)
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Learning Distributions:Learning Distributions:
 Objectives Objectives

• Learning The Target Distribution

– What is the target distribution?

– Can’t use “the” target distribution

• Case in point: suppose target distribution was P1 (collected over 20 examples)

• Using Naïve Bayes would not produce an h close to the MAP/ML estimate

– Relaxing CI assumptions: expensive

• MLE becomes intractable; BOC approximation, highly intractable

• Instead, should make judicious CI assumptions

– As before, goal is generalization

• Given D (e.g., {1011, 1001, 0100})

• Would like to know P(1111) or P(11**) ≡  P(x1 = 1, x2 = 1)

• Several Variants

– Known or unknown structure

– Training examples may have missing values

– Known structure and no missing values: as easy as training Naïve Bayes
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Learning Bayesian Networks:Learning Bayesian Networks:
 Partial  Partial ObservabilityObservability

• Suppose Structure Known, Variables Partially Observable

– Example

• Can observe ForestFire, Storm, BusTourGroup, Thunder

• Can’t observe Lightning, Campfire

– Similar to training artificial neural net with hidden units

• Causes: Storm, BusTourGroup

• Observable effects: ForestFire, Thunder

• Intermediate variables: Lightning, Campfire

• Learning Algorithm

– Can use gradient learning (as for ANNs)

– Converge to network h that (locally) maximizes P(D | h)

• Analogy: Medical Diagnosis

– Causes: diseases or diagnostic findings

– Intermediates: hidden causes or hypothetical inferences (e.g., heart rate)

– Observables: measurements (e.g., from medical instrumentation)

Bus
TourGroupStorm

Lightning Campfire

ForestFireThunder
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Learning Bayesian Networks:Learning Bayesian Networks:
 Gradient Ascent Gradient Ascent

• Algorithm Train-BN (D)

– Let wijk denote one entry in the CPT for variable Yi in the network

• wijk = P(Yi = yij | parents(Yi) = <the list uik of values>)

• e.g., if Yi  ≡ Campfire, then (for example) uik ≡ <Storm = T, BusTourGroup = F>

– WHILE termination condition not met DO // perform gradient ascent

• Update all CPT entries wijk using training data D

• Renormalize wijk to assure invariants:

• Applying Train-BN

– Learns CPT values

– Useful in case of known structure

– Next: learning structure from data

Bus
TourGroupStorm

Lightning Campfire

ForestFireThunder
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Tree Dependent Distributions:Tree Dependent Distributions:
Learning The StructureLearning The Structure

• Problem Definition: Find Most Likely T Given D

• Brute Force Algorithm
– FOR each tree T DO

Compute the likelihood of T:

– RETURN the maximal T

• Is This Practical?
– Typically not… (| H| analogous to that of ANN weight space)

– What can we do about it?

• Solution Approaches
– Use criterion (scoring function): Kullback-Leibler (K-L) distance

– Measures how well a distribution P approximates a distribution P’

– aka K-L divergence, aka cross-entropy, aka relative entropy
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Tree Dependent Distributions:Tree Dependent Distributions:
Maximum Weight Spanning Tree (MWST)Maximum Weight Spanning Tree (MWST)

• Input: m Measurements (n-Tuples), i.i.d. ~ P

• Algorithm Learn-Tree-Structure (D)

– FOR each variable X DO estimate P(x) // binary variables: n numbers

– FOR each pair (X, Y) DO estimate P(x, y) // binary variables: n2 numbers

– FOR each pair DO compute the mutual information (measuring the information X
gives about Y) with respect to this empirical distribution

– Build a complete undirected graph with all the variables as vertices

– Let I(X; Y) be the weight of edge (X, Y)

– Build a Maximum Weight Spanning Tree (MWST)

– Transform the resulting undirected tree into a directed tree (choose a root, and
set the direction of all edges away from it)

– Place the corresponding CPTs on the edges (gradient learning)

– RETURN: a tree-structured BBN with CPT values
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Applications of Bayesian NetworksApplications of Bayesian Networks

• Inference: Decision Support Problems

– Diagnosis

• Medical [Heckerman, 1991]

• Equipment failure

– Pattern recognition

• Image identification: faces, gestures

• Automatic speech recognition

• Multimodal: speechreading, emotions

– Prediction: more applications later…

– Simulation-based training [Grois, Hsu, Wilkins, and Voloshin, 1998]

– Control automation

• Navigation with a mobile robot

• Battlefield reasoning [Mengshoel, Goldberg, and Wilkins, 1998]

• Learning: Acquiring Models for Inferential Applications
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Related Work in Bayesian NetworksRelated Work in Bayesian Networks

• BBN Variants, Issues Not Covered Yet

– Temporal models

• Markov Decision Processes (MDPs)

• Partially Observable Markov Decision Processes (POMDPs)

• Useful in reinforcement learning

– Influence diagrams

• Decision theoretic model

• Augments BBN with utility values and decision nodes

– Unsupervised learning (EM, AutoClass)

– Feature (subset) selection: finding relevant attributes

• Current Research Topics Not Addressed in This Course

– Hidden variables (introduction of new variables not observed in data)

– Incremental BBN learning: modifying network structure online (“on the fly”)

– Structure learning for stochastic processes

– Noisy-OR Bayesian networks: another simplifying restriction
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TerminologyTerminology

• Graphical Models of Probability

– Bayesian belief networks (BBNs) aka belief networks aka causal networks

– Conditional independence, causal Markovity

– Inference and learning using Bayesian networks

• Representation of distributions: conditional probability tables (CPTs)

• Learning polytrees (singly-connected BBNs) and tree-structured BBNs (trees)

• BBN Inference

– Type of probabilistic reasoning

– Finds answer to query about P(x) - aka QA

• Gradient Learning in BBNs

– Known structure

– Partial observability

• Structure Learning for Trees

– Kullback-Leibler distance (K-L divergence, cross-entropy, relative entropy)

– Maximum weight spanning tree (MWST) algorithm
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Summary PointsSummary Points

• Graphical Models of Probability

– Bayesian networks: introduction

• Definition and basic principles

• Conditional independence (causal Markovity) assumptions, tradeoffs

– Inference and learning using Bayesian networks

• Acquiring and applying CPTs

• Searching the space of trees: max likelihood

• Examples: Sprinkler, Cancer, Forest-Fire, generic tree learning

• CPT Learning: Gradient Algorithm Train-BN

• Structure Learning in Trees: MWST Algorithm Learn-Tree-Structure

• Reasoning under Uncertainty: Applications and Augmented Models

• Some Material From: http://robotics.Stanford.EDU/~koller

• Next Week: Read Heckerman Tutorial

• Next Class: Presentation - “In Defense of Probability”, Cheeseman


