

Approaches to Probabilistic Reasoning

- Statistical Approach
- Frequency Ratio definition
- $P(A)=$ number of observed occurrences of event A
total observed occurrences
- good definition provided we have enough sample data
- Law of large numbers
- Logicist Approach
- deals with uncertainty using nonnumeric techniques
- nonmonotonic logic
- a set of beliefs is as sumed to be complete
- upon uncovering of evidence to the contrary, the set of beliefs are revised to add new beliefs or to drop inconsistent beliefs.

Common Fallacies about Probability

- Probability, a frequency ratio (most common definition)
- Definition - ratio of the number of occurrences (n) in which the event A is true to the Definition - ratio of the number of occurrence
total number of observed occurrences (m)

$$
P(A)=m / n
$$

- restricted to domains where repeated sampling is possible
- law of large numbers
- no such concept as 'the' probability
- Probability, a measure of belief (advocated definition)
- measure of an entity's belief in that proposition, given the evidence
- probability can be revised when new evidence comes to light
- probability will depend on the observer's knowledge
- probability is subjective

> - follows from the frequency ratio definition

Bayesian Analysis requires large amounts of data

- lack of available knowledge can be countered by making assumptions like conditional independence and maximum entropy
using maximum entropy makes stronger predictions than what the available information permits
detect new information
- Prior probabilities assume more information than given
- assume uni form prior probabilities and maximum likelihood
there is no unique probability associated with a proposition, it is revised as more information is gained

Common Fallacies about Probability (Contd.)

- Non numeric approach is sufficient (Truth Maintenance Systems)
keep track of the belief and belief justification
maintains a dependency record for each inferred fact indicating justification in
terms of both presence and absence of infor mation
truth value is represented by a Boolean expression that indicates the assumptions needed for belief
relative probability
nonnumeric approaches can be used if decision making involves choosing between a set of options not if the user has a choice of not selecting any alternative
- More than one number is needed to represent Uncertainty (Schafer/Dempster) - uses two values, belief and plausibility
probability always lies within an interval set by these two values
accepts an incomplete probabilistic model
estimates the degree to which the evidence supports the hypothesis
the number of parameters needed depends on the questions which are to answered
CIS 830: Advanced Topics in Artificial Intelligence
 and

Common Fallacies about Probability (Contd.)

- Priors are not important
- prior probabilities are subjective estimates of an expert
- humans are not good at estimating probabilities
- alternative is to use equiprobable priors
- make use of whatever information is available, including priors
- final probability is not strongly dependent upon the priors
- Vagueness (Fuzzy Logic)
- not always possible to give a yes/no answer
- partial membership
- developed on the basis of the fallacy of probability being a frequency
- probabilistic model to capture vagueness - each object has a numeric degree of membership

CIS 830: Advanced Topics in Artificial Intelligence

Subjective Probability

- people are poor estimators
- influenced by the most recent relevant results
- attempt to infer expert systems directly from data rather than filter them througr human experts
- random sampling to find the proportion of of instances in which the predicate of interest is true
- artificial system should be based only on the basic laws of probability
- use the principle of maximum entropy in case of incomplete knowledge

Summary

Content Critique

- Key Contribution - promotes the principle that probability is a measure of belief, which encompasses all other definitions of probability
- Strengths
- Gives a brief insight into the various approaches to reasoning under uncertainty
convinces the reader that probability theory is sufficient for reasoning under uncertainty
- Weaknesses
- highly opinionated stand
lacking comparative analysis with alter native approaches
Presentation Critique
Audience-detractors of probability theory,
Audience - detractors of probability theory,
- Positive points - convincing set of exampl
- Negative points - defensive approach

