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Lecture OutlineLecture Outline

• Suggested Reading: Sections 6.1-6.5, Mitchell

• Overview of Bayesian Learning

– Framework: using probabilistic criteria to generate hypotheses of all kinds

– Probability: foundations

• Bayes’s Theorem

– Definition of conditional (posterior) probability

– Ramifications of Bayes’s Theorem

• Answering probabilistic queries

• MAP hypotheses

• Generating Maximum A Posteriori (MAP) Hypotheses

• Generating Maximum Likelihood Hypotheses

• Later

• Next class: learning Bayesian networks

• Probabilistic methods for KDD

• Learning over text, web documents

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

Bayesian LearningBayesian Learning

• Framework: Interpretations of Probability [Cheeseman, 1985]
– Bayesian subjectivist view

• A measure of an agent’s belief  in a proposition

• Proposition denoted by random variable (sample space: range)

• e.g., Pr(Outlook = Sunny) = 0.8

– Frequentist view: probability is the frequency of observations of an event

– Logicist view: probability is inferential evidence in favor of a proposition

• Typical Applications
– HCI: learning natural language; intelligent displays; decision support

– Approaches: prediction; sensor and data fusion (e.g., bioinformatics)

• Prediction: Examples
– Measure relevant parameters: temperature, barometric pressure, wind speed

– Make statement of the form Pr(Tomorrow’s-Weather  = Rain) = 0.5

– College admissions: Pr(Acceptance) ≡ p

• Plain beliefs: unconditional acceptance (p = 1) or categorical rejection (p = 0)

• Conditional beliefs: depends on reviewer (use probabilistic model)
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Two Roles for Bayesian MethodsTwo Roles for Bayesian Methods

• Practical Learning Algorithms

– Naïve Bayes  (aka simple Bayes )

– Bayesian belief network (BBN) structure learning and parameter estimation

– Combining prior knowledge (prior probabilities) with observed data

• A way to incorporate background knowledge (BK), aka domain knowledge

• Requires prior probabilities (e.g., annotated rules)

• Useful Conceptual Framework

– Provides “gold standard” for evaluating other learning algorithms

• Bayes Optimal Classifier (BOC)

• Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)

– Additional insight into Occam’s Razor (MDL )
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Probabilistic Concepts versusProbabilistic Concepts versus
Probabilistic LearningProbabilistic Learning

• Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning

• Probabilistic Concepts

– Learned concept is a function, c: X → [0, 1]

– c(x), the target value, denotes the probability that the label 1 (i.e., True) is

assigned to x

– Previous learning theory is applicable (with some extensions)

• Probabilistic (i.e., Bayesian) Learning

– Use of a probabilistic criterion in selecting a hypothesis h

• e.g., “most likely” h given observed data D: MAP hypothesis

• e.g., h for which D is “most likely”: max likelihood (ML) hypothesis

• May or may not be stochastic (i.e., search process might still be deterministic)

– NB: h can be deterministic (e.g., a Boolean function) or probabilistic
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Probability:Probability:
Basic Definitions and AxiomsBasic Definitions and Axioms

• Sample Space (Ω): Range of a Random Variable X

• Probability Measure Pr(•)

– Ω denotes a range of “events”; X: Ω

– Probability Pr, or P, is a measure over Ω

– In a general sense, Pr(X = x ∈ Ω) is a measure of belief in X = x

• P(X = x) = 0 or P(X = x) = 1: plain (aka categorical) beliefs (can’t be revised)

• All other beliefs are subject to revision

• Kolmogorov Axioms

– 1. ∀x ∈ Ω . 0 ≤ P(X = x) ≤ 1

– 2. P(Ω) ≡ ∑x ∈ Ω P(X = x) = 1

– 3.

• Joint Probability: P(X1 ∧ X2) ≡ Probability of the Joint Event X1 ∧ X2

• Independence: P(X1 ∧ X2) = P(X1) • P(X2)
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Bayes’sBayes’s  Theorem Theorem

• Theorem

• P(h) ≡ Prior Probability of Hypothesis h

– Measures initial beliefs (BK) before any information is obtained (hence prior)

• P(D) ≡ Prior Probability of Training Data D

– Measures probability of obtaining sample D (i.e., expresses D)

• P(h | D) ≡  Probability of h Given D

– | denotes conditioning - hence P(h | D) is a conditional (aka posterior) probability

• P(D | h) ≡  Probability of D Given h

– Measures probability of observing D given that h is correct (“generative ” model)

• P(h ∧ D) ≡ Joint Probability of h and D

– Measures probability of observing D and of h being correct
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Choosing HypothesesChoosing Hypotheses

( )[ ]xfmaxarg
x∈

• Bayes’s Theorem

• MAP Hypothesis

– Generally want most probable hypothesis given the training data

– Define:                         ≡ the value of x in the sample space Ω with the highest f(x)

– Maximum a posteriori hypothesis, hMAP

• ML Hypothesis

– Assume that p(hi) = p(hj) for all pairs i, j (uniform priors, i.e., PH ~ Uniform)

– Can further simplify and choose the maximum likelihood hypothesis, hML
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Bayes’sBayes’s  Theorem: Theorem:
Query Answering (QA)Query Answering (QA)

• Answering User Queries
– Suppose we want to perform intelligent inferences over a database DB

• Scenario 1: DB contains records (instances), some “labeled” with answers

• Scenario 2: DB contains probabilities (annotations) over propositions

– QA: an application of probabilistic inference

• QA Using Prior and Conditional Probabilities: Example
– Query: Does patient have cancer or not?

– Suppose: patient takes a lab test and result comes back positive

• Correct + result in only 98% of the cases in which disease is actually present

• Correct - result in only 97% of the cases in which disease is not present

• Only 0.008 of the entire population has this cancer

– α ≡ P(false negative for H0 ≡ Cancer) = 0.02 (NB: for 1-point sample)

– β ≡ P(false positive for H0 ≡ Cancer) = 0.03 (NB: for 1-point sample)

– P(+ | H0) P(H0) = 0.0078, P(+ | HA) P(HA) = 0.0298 ⇒ hMAP = HA ≡ ¬Cancer

( )
( ) 0.02

0.98

=−
=+

Cancer|P
Cancer|P ( )

( ) 0.97

0.03

=¬−
=¬+

Cancer|P
Cancer|P( )

( ) 0.992

0.008

=¬
=

CancerP
CancerP

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

Basic Formulas for ProbabilitiesBasic Formulas for Probabilities

• Product Rule (Alternative Statement of Bayes’s Theorem)

– Proof: requires axiomatic set theory, as does Bayes’s Theorem

• Sum Rule

– Sketch of proof (immediate from axiomatic set theory)

• Draw a Venn diagram of two sets denoting events A and B

• Let A ∪ B denote the event corresponding to A ∨ B…

• Theorem of Total Probability

– Suppose events A1, A2, …, An are mutually exclusive and exhaustive

• Mutually exclusive: i ≠ j ⇒ Ai ∧ Aj = ∅

• Exhaustive: ∑ P(Ai) = 1

– Then

– Proof: follows from product rule and 3rd Kolmogorov axiom
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MAP and ML Hypotheses:MAP and ML Hypotheses:
A Pattern Recognition FrameworkA Pattern Recognition Framework

• Pattern Recognition Framework
– Automated speech recognition (ASR), automated image recognition

– Diagnosis

• Forward Problem: One Step in ML Estimation
– Given: model h, observations (data) D

– Estimate: P(D | h), the “probability that the model generated  the data”

• Backward Problem: Pattern Recognition / Prediction Step
– Given: model h, observations D

– Maximize: P(h(X) = x | h, D) for a new X (i.e., find best x)

• Forward-Backward (Learning) Problem
– Given: model space H, data D

– Find: h ∈ H such that P(h | D) is maximized (i.e., MAP hypothesis)

• More Info
– http://www.cs.brown.edu/research/ai/dynamics/tutorial/Documents/

HiddenMarkovModels.html

– Emphasis on a particular H (the space of hidden Markov models)
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Bayesian Learning Example:Bayesian Learning Example:
Unbiased Coin [1]Unbiased Coin [1]

• Coin Flip

– Sample space: Ω = {Head, Tail}

– Scenario: given coin is either fair or has a 60% bias in favor of Head

• h1 ≡ fair coin: P(Head) = 0.5

• h2 ≡ 60% bias towards Head: P(Head) = 0.6

– Objective: to decide between default (null) and alternative hypotheses

• A Priori (aka Prior) Distribution on H

– P(h1) = 0.75, P(h2) = 0.25

– Reflects learning agent’s prior beliefs regarding H

– Learning is revision of agent’s beliefs

• Collection of Evidence

– First piece of evidence: d ≡ a single coin toss, comes up Head

– Q: What does the agent believe now?

– A: Compute P(d) = P(d | h1) P(h1) + P(d | h2) P(h2)
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Bayesian Learning Example:Bayesian Learning Example:
Unbiased Coin [2]Unbiased Coin [2]

• Bayesian Inference: Compute P(d) = P(d | h1) P(h1) + P(d | h2) P(h2)

– P(Head) = 0.5 • 0.75 + 0.6 • 0.25 = 0.375 + 0.15 = 0.525

– This is the probability of the observation d = Head

• Bayesian Learning

– Now apply Bayes’s Theorem

• P(h1 | d) = P(d | h1) P(h1) / P(d) = 0.375 / 0.525 = 0.714

• P(h2 | d) = P(d | h2) P(h2) / P(d) = 0.15 / 0.525 = 0.286

• Belief has been revised downwards for h1, upwards for h2

• The agent still thinks that the fair coin is the more likely hypothesis

– Suppose we were to use the ML approach (i.e., assume equal priors)

• Belief is revised upwards from 0.5 for h1

• Data then supports the bias coin better

• More Evidence: Sequence D of 100 coins with 70 heads and 30 tails

– P(D) = (0.5)50 • (0.5)50 • 0.75 + (0.6)70 • (0.4)30 • 0.25

– Now P(h1 | d) << P(h2 | d)
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Bayesian Concept LearningBayesian Concept Learning
and Version Spacesand Version Spaces

• Assumptions

– Fixed set of instances <x1, x2, …, xm>

– Let D denote the set of classifications: D = <c(x1), c(x2), …, c(xm)>

• Choose P(D | h)

– P(D | h) = 1 if h consistent with D (i.e.,∀ xi . h(xi) = c(xi))

– P(D | h) = 0 otherwise

• Choose P(h) ~ Uniform

– Uniform distribution:

– Uniform priors correspond to “no background knowledge” about h

– Recall: maximum entropy

• MAP Hypothesis
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• Start with Uniform Priors

– Equal probabilities assigned to each hypothesis

– Maximum uncertainty (entropy), minimum prior information

• Evidential Inference

– Introduce data (evidence) D1: belief revision occurs

• Learning agent revises conditional probability of inconsistent hypotheses to 0

• Posterior probabilities for remaining h ∈ VSH,D revised upward

– Add more data (evidence) D2: further belief revision

Evolution of Posterior ProbabilitiesEvolution of Posterior Probabilities

P(h)

Hypotheses

P(h|D1)

Hypotheses

P(h|D1, D2)

Hypotheses
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Most Probable ClassificationMost Probable Classification
of New Instancesof New Instances

• MAP and MLE: Limitations

– Problem so far: “find the most likely hypothesis given the data”

– Sometimes we just want the best classification of a new instance x, given D

• A Solution Method

– Find best (MAP) h, use it to classify

– This may not be optimal, though!

– Analogy

• Estimating a distribution using the mode versus the integral

• One finds the maximum, the other the area

• Refined Objective

– Want to determine the most probable classification

– Need to combine the prediction of all hypotheses

– Predictions must be weighted by their conditional probabilities

– Result: Bayes Optimal Classifier (see CIS 798 Lecture 10)
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TerminologyTerminology

• Introduction to Bayesian Learning

– Probability foundations

– Definitions: subjectivist, frequentist, logicist, objectivist

– (3) Kolmogorov axioms

• Bayes’s Theorem

– Prior probability of an event

– Joint probability of an event

– Conditional (posterior) probability of an event

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses

– MAP hypothesis: highest conditional probability given observations (data)

– ML: highest likelihood of generating the observed data

– ML estimation (MLE): estimating parameters to find ML hypothesis

• Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model

• Bayesian Learning: Searching Model (Hypothesis) Space using CPs
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Summary PointsSummary Points

• Introduction to Bayesian Learning

– Framework: using probabilistic criteria to search H

– Probability foundations

• Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist

• Kolmogorov axioms

• Bayes’s Theorem

– Definition of conditional (posterior) probability

– Product rule

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses

– Bayes’s Rule and MAP

– Uniform priors: allow use of MLE to generate MAP hypotheses

– Relation to version spaces, candidate elimination

• Next Class: Presentation on Learning Bayesian (Belief) Network Structure

– For more on Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes

– Soon: learning over text


