Lecture 21

Uncertain Reasoning Discussion (1 of 4):
The Case for Probability

Monday, March 6, 2000
William H. Hsu

Department of Computing and Information Sciences, KSU
http://www.cis.ksu.edu/~bhsu

Readings:
“In Defense of Probability”, Cheeseman
(Reference) Sections 6.1-6.5, Mitchell

o
St
CIS 830: Advanced Topics in Artificial Intelligence Depariment of Computing and miomaion Sciencen

Bayesian Learning

Framework: Interpretations of Probability [Cheeseman, 1985]
— Bayesian subjectivist view
+ A measure of an agent’s belief _ in a proposition
+ Proposition denoted by random variable (sample space: range)
* e.g., Pr(Outlook = Sunny) = 0.8
— FErequentist view: probability is the frequency of observations of an event
— Loadicist view: probability is inferential evidence in favor of a proposition
Typical Applications

HCI: learning natural language; intelligent displays; decision support
— Approaches: prediction; sensor and data fusion (e.g., bioinformatics)
* Prediction: Examples

Measure relevant parameters: temperature, barometric pressure, wind speed
Make statement of the form Pr(Tomorrow’s-Weather = Rain)=0.5
— College admissions: Pr(Acceptance) = p

« Plain beliefs: unconditional acceptance (p = 1) or categorical rejection (p = 0)

« Conditional beliefs: depends on reviewer (use probabilistic model) KSU
i
i

CIS 830: Advanced Topics in Artificial Intelligence

Kansas State University

Departmentof Computing and information Sciences

Probabilistic Concepts versus

Lecture Outline

Suggested Reading: Sections 6.1-6.5, Mitchell

Overview of Bayesian Learning

Framework: using probabilistic criteria to generate hypotheses of all kinds
— Probability: foundations

Bayes's Theorem
— Definition of conditional (posterior) probability
— Ramifications of Bayes's Theorem

+ Answering probabilistic queries

* MAP hypotheses

Generating Maximum A Posteriori (MAP) Hypotheses

Generating Maximum Likelihood Hypotheses

« Later

+ Next class: learning Bayesian networks

« Probabilistic methods for KDD

« Learning over text, web documents K = i

CIS 830: Advanced Topics in Artificial Intelligence

Kansas State Universily
Department of Computing and Information Sciences

Two Roles for Bayesian Methods

Practical Learning Algorithms
— Naive Bayes (akasimple Bayes)

Bayesian belief network (BBN) structure learning and parameter estimation

Combining prior knowledge (prior probabilities) with observed data
+ A way to incorporate background knowledge (BK), aka domain knowledge
+ Requires prior probabilities (e.g., annotated rules)

Useful Conceptual Framework

— Provides “gold standard” for evaluating other learning algorithms
+ Bayes Optimal Classifier (BOC)

« Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)
— Additional insight into Occam’s Razor (MDL )
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Probability:

Probabilistic Learning

Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning
Probabilistic Concepts

Learned concept is a function, c: X - [0, 1]

c(x), the target value, denotes the probability that the label 1 (i.e., True) is
assigned to x

Previous learning theory is applicable (with some extensions)

Probabilistic (i.e., Bayesian) Learning

Use of a probabilistic criterion in selecting a hypothesis h
* e.g., “most likely” h given observed data D: MAP hypothesis
* e.g., hfor which Dis “most likely": max likelihood (ML) hypothesis

+ May or may not be stochastic (i.e., search process might still be deterministic)
— NB: hcan be deterministic (e.g., a Boolean function) or probabilistic
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Basic Definitions and Axioms

Sample Space (Q): Range of a Random Variable X
Probability Measure Pr(s)
— Qdenotes arange of “events”; X: Q

— Probability Pr, or P, is a measure over Q
— In ageneral sense, Pr(X = x [0 Q) is a measure of belief in X=x
* P(X=x)=0or P(X=x)=1: plain (aka categorical) beliefs (can't be revised)
« All other beliefs are subject to revision
« Kolmogorov Axioms

— 1.O0xOQ.0<PX=x)<1

- 2 PQ =Yg PAX=x)=1

= 30X, X,,... 0i#j0 X, 0X,=0.

P%;X, %: i P(x,)

« Joint Probability: P(X; 0 X,) = Probability of the Joint Event X, 0 X,

+ Independence: P(X; [ X,) = P(X) * P(X,) K i §
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Bayes's Theorem

Choosing Hypotheses

¢ Theorem « Bayes'’s Theorem

_P(p/h)P(h) _P(hOD) _P(p/h)P(h) _ P(hOD)
P(hD)=—=0r = P(hD)=—==2r
P(D) P(D) P(D) P(0)
] L ) * MAP Hypothesi
« P(h) = Prior Probability of Hypothesis h P SIS
o . . . — Generally want most probable hypothesis given the training data
— Measures initial beliefs (BK) before any information is obtained (hence prior) _ Define: argrz%x[f(x)] = the value of xin the sample space Q with the highest )
* P(D) = Prior Probability of Training Data D

— Maximum a posteriori hypothesis, hy,p
— Measures probability of obtaining sample D (i.e., expresses D)

Huae = argmax P(h D)
« P(h| D)= Probability of h Given D P(D/h)P(h)
— |denotes conditioning - hence P(h | D) is a conditional (aka posterior) probability P(D
=argmax P(D[h)P(h)
« P(D| h) = Probability of D Given h « ML Hypothesis o

=arg max

— Measures probability of observing D given that his correct (“generative " model)
« P(h 0OD) = Joint Probability of hand D

— Measures probability of observing D and of h being correct

— Assume that p(h) = p(h)) for all pairs /, j (uniform priors, i.e., P, ~ Uniform)
— Can further simplify and choose the maximum likelihood hypothesis, hy,

Ksu hy, = arg max P(D[h,) Ksu
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Bayes's Theorem:

Basic Formulas for Probabilities

Query Answering (QA)

* Answering User Queries

Product Rule (Alternative Statement of Bayes's Theorem)
— Suppose we want to perform intelligent inferences over a database DB

PlaB)= P(ADB)
« Scenario 1: DB contains records (instances), some “labeled” with answers 18)= )
« Scenario 2: DB contains probabilities (annotations) over propositions — Proof: requires axiomatic set theory, as does Bayes’s Theorem
— QA: an application of probabilistic inference
A Using Pri d Conditional Probabilities: E; I * SumRule
. sing Prior and Conditional Probabilities: Example
Q 9 P P(ADB)=P(A)+P(B)-P(ADB)
— Query: Does patient have cancer or not? . . . .
— Sketch of proof (immediate from axiomatic set theory)
— Suppose: patient takes a lab test and result comes back positive
« Draw a Venn diagram of two sets denoting events A and B
« Correct + result in only 98% of the cases in which disease is actually present
« Correct - result in only 97% of the cases in which disease is not present + Let Al] B denote the event corresponding to AU B...
« Only 0.008 of the entire population has this cancer + Theorem of Total Probability

— o = P(false negative for H, = Cancer) = 0.02 (NB: for 1-point sample)

— Suppose events A;, A,, ..., A,are mutually exclusive and exhaustive
— B = P(false positive for H, = Cancer) = 0.03 (NB: for 1-point sample)

« Mutually exclusive: i #j0 A;0A; =0
P(cancer)=0.008 P(+/cancer)=0.98 P(+/~ Cancer)=0.03 « Exhaustive: 5 P(A) =1
= — = —[= = <
P(ﬁ Canl:er)— 0.992 P( /Cancer)—0.0Z P( | Canl:er) 0.97 ) _ Then P(E): Z P(B/A,)LP(A,)
— P(+ Hy) P(Hy) = 0.0078, P(+ | H,) P(H,) = 0.0298 [ hyysp = H, =~ Cancer ; <

@i = FR
Ksu — Proof: follows from product rule and 3¢ Kolmogorov axiom Ksu
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MAP and ML Hypotheses:

Bayesian Learning Example:
A Pattern Recognition Framework

Pattern Recognition Framework

Unbiased Coin [1]

« Coin Flip
- A.u!omaled speech recognition (ASR), automated image recognition _ Sample space: Q = {Head, Tail}
F7 Dlagdm;slsbl One s in ML Esti . — Scenario: given coin is either fair or has a 60% bias in favor of Head
. orwars roblem: One Step in stimation
) .p * h; =fair coin: P(Head) = 0.5
— Given: model h, observations (data) D
« h,=60Y 3 =
— Estimate: P(D| h), the “probability that the model generated _ the data” h,= 60% bias towards Head: P(Head) = 0.6
«+  Backward Problem: Pattern Recognition / Prediction Step — Objective: to decide between default (null) and alternative hypotheses

— Given: model h, observations D

— Maximize: P(h(X) = x| h, D) for anew X (i.e., find best x)
« Forward-Backward (Learning) Problem

— Given: model space H, data D

* A Priori (aka Prior) Distribution on H
— P(hy)=0.75, P(h,) = 0.25

— Reflects learning agent's  prior beliefs regarding H

— Learning is revision of agent’s beliefs
— Find: h O Hsuch that P(h | D) is maximized (i.e., MAP hypothesis) . .
+ Collection of Evidence
* More Info ] ) . )
— http://www.cs.brown.edu/research/ai/dynamics/tutorial/Documents/ — Firstpiece of evidence: d =asingle coin toss, comes up Head
HiddenMarkovModels.html — Q: What does the agent believe now?

— Emphasis on a particular H (the space of hidden Markov models) K i — A: Compute P(d) = P(d | hy) P(hy) + P(d | hy) P(h,) K i
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Bayesian Learning Example:

Unbiased Coin [2]

Bayesian Inference: Compute P(d) = P(d | hy) P(h,) + P(d | h,) P(h,)
— P(Head)=0.5+0.75+ 0.6 » 0.25 = 0.375 + 0.15 = 0.525
— This is the probability of the observation d = Head
« Bayesian Learning
— Now apply Bayes's Theorem
« P(hy| d)=P(d| hy) P(h;) | P(d) = 0.375/0.525 = 0.714
« P(h,| d)=P(d| hy) P(h,) | P(d) =0.15/0.525 = 0.286
* Belief has been revised downwards for h;, upwards for h,
« The agent still thinks that the fair coin is the more likely hypothesis
— Suppose we were to use the ML approach (i.e., assume equal priors)
« Belief is revised upwards from 0.5 for h;
« Data then supports the bias coin better
More Evidence: Sequence D of 100 coins with 70 heads and 30 tails
— P(D)=(0.5)*+(0.5)%+ 0.75 + (0.6)7°+ (0.4)*°+ 0.25
- Now P(h; | d) << Ph,| d) K i
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Evolution of Posterior Probabilities

Bayesian Concept Learning

and Version Spaces

Assumptions

— Fixed set of instances <x;, Xy, ..., X,>

— Let Ddenote the set of classifications: D= <c¢(x,), ¢(x,), ..., ¢(X,;)>
Choose P(D| h)

— P(D| h)=1if hconsistent with D (i.e.,0 x; . h(x) = ¢(x;))
— P(D| h) =0 otherwise
* Choose P(h) ~ Uniform

1
— Uniform distribution: P(h)=/7/
— Uniform priors correspond to “no background knowledge” about h

— Recall: maximum entropy
* MAP Hypothesis
D]il if his consistent with D
P(h[D)=HVS,, 1
H} otherwise

kst
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Most Probable Classification

+ Start with Uniform Priors
— Equal probabilities assigned to each hypothesis

Maximum uncertainty (entropy), minimum prior information

Ph) = (D) m=> ~(1i0,, 0,

_Hypotheses Hypotheses Hypotheses
» Evidential Inference
— Introduce data (evidence) D;: belief revision occurs
« Learning agent revises conditional probability of inconsistent hypotheses to 0
« Posterior probabilities for remaining h 0 VS, prevised upward
— Add more data (evidence) D,: further belief revision K,s“
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Terminology

Introduction to Bayesian Learning

— Probability foundations

— Definitions: subjectivist, frequentist, logicist, objectivist
— (3) Kolmogorov axioms
Bayes'’s Theorem

— Prior probability of an event
— Joint probability of an event
— Conditional (posterior) probability of an event
Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
— MAP hypothesis: highest conditional probability given observations (data)

— ML: highest likelihood of generating the observed data
— ML estimation (MLE): estimating parameters to find ML hypothesis
Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model
Bayesian Learning: Searching Model (Hypothesis) Space using CPs
LS
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of New Instances

MAP and MLE: Limitations

— Problem so far: “find the most likely hypothesis given the data”
— Sometimes we just want the best classification of a new instance x, given D
* A Solution Method
— Find best (MAP) h, use it to classify
— This may not be optimal, though!
— Analogy
« Estimating a distribution using the mode versus the integral
+ One finds the maximum, the other the area
« Refined Objective

— Want to determine the most probable classification
— Need to combine the prediction of all hypotheses
— Predictions must be

by their ditional

pr
— Result: Bayes Optimal Classifier (see CIS 798 Lecture 10) K's “
i
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Summary Points

Introduction to Bayesian Learning
— Framework: using probabilistic criteria to search H
— Probability foundations
« Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist
+ Kolmogorov axioms
« Bayes's Theorem
— Definition of conditional (posterior) probability
— Productrule
Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
— Bayes’s Rule and MAP
— Uniform priors: allow use of MLE to generate MAP hypotheses
— Relation to version spaces, candidate elimination
Next Class: Presentation on Learning Bayesian (Belief) Network Structure
— For more on Bayesian learning: MDL, BOC, Gibbs, Simple (Naive) Bayes
— Soon: learning over text K i i
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