Lecture 22

Uncertainty Reasoning Presentation(2 of 4) Learning Bayesian Networks from Data

Wednesday, March 8, 2000

Jincheng Gao
Department of Geography, KSU

Readings:

"Learning Bayesian Network Structure from Massive Datasets:
The 'Sparse Candidate' Algorithm
Friedman, Nachman, and Peer
Sat

Presentation Outline

- Issues
- How to guarantee all available candidate parents are selected
- What is the criteria to stop its iteration to get a maximum score of network
- Strengths: It presents a very useful algorithm to restrict search space in BBN
- Weaknesses: It doesn't consider spurious dependent variables
- Outline
- Why learn a Bayesian network
- Introduction to Bayesian network

Terminology of Bayesian network

- What is Bayesian network
o How to construct a Bayesian network
- "Sparse Candidate" algorithms
- Maximize spanning tree structure
- "Sparse candidate" algorithm
- How to select candidate parents
- How to find the maximize score of a Bayesian network
- Experimental Evaluation

CIS 830: Advanced Topics in Artificial Intelligence

Presentation Outline

Paper

- "Learning Bayesian Network Structure from Massive Datasets:

The 'Sparse Candidate' Algorithm"

- Author: Nir Friedman, Iftach Nachman and Dana Peer,

Hebrew University, Israel
Overview
Introduction to Bayesian Network
Outline of "Sparse Candidate" Algorithm

- How to Choose Candidate Sets
- Learning with Small Candidate Sets

Experimental Evaluation
Goal

- Introduces an algorithm that achieves a faster learning by restricting the search space
References
- Machine learning, T. M. Mitchell
- Artificial Intelligence: A Modern Approach, S. J. Russell and P. Norvig Bayesian Networks without Tears, E. Charniak

CIS 830: Advanced Topics in Artificial Intelligence

Introduction to Bayesian Network

Why learn a Bayesian network?

- Solves the uncertain problems that are difficult for logic inference
- Combines knowledge engineering and statistical induction
- Covers the whole spectrum from knowledge-intensive model construction to data-intensive model induction
- More than a learning black-box
- Causal representation, reasoning, and discovery
- Increasing interests in AI

Bayesian Networks

- Bayesian Network

A directed acyclic graph that represents a joint probability distribution for a set of random variables.

- Vertices (nodes): denote events (each a random variable)
- Edges (arcs, links): denote conditional dependencies
- Conditional probability tables (CPT)
- Assumptions - Each node is asserted to be conditionally dependent of its nondescendants, given its immediate parents
- Chain Rule for (Exact) inference in Bayesian networks

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

- Example $\mathrm{P}(\mathrm{fo})=.15$ \qquad

$\mathrm{P}(\mathrm{do} \mid$ fo bp$)=.99$
$\mathrm{P}(\mathrm{do} \mid$ fo -bp$)=.90$ $\mathrm{P}(\mathrm{do} \mid$ fo -bp$)=.90$
$\mathrm{P}(\mathrm{do} \mid-\mathrm{fo} \mathrm{bp})=.97$ $\mathrm{P}(\mathrm{do} \mid-\mathrm{fo} \mathrm{bp})=.97$
$\mathrm{P}(\mathrm{do} \mid-\mathrm{fo} \mathrm{bp})=.3$

CIS 830: Advanced Topics in Artificial Intelligence

Bayesian Networks

Score-Based

- Define scoring function (aka score) that evaluates how well (in)dependencies in a structure match observations, such as Bayesian score and MDL
- Bayesian Score for Marginal Likelihood $P(D \mid h)$
$\boldsymbol{P}(D / h) \propto \prod_{i=1}^{n}\left[\prod_{P a_{i}^{h}} \frac{\Gamma\left(\alpha\left(P_{i}^{h}\right)\right)}{\left.\Gamma\left(\boldsymbol{P a}_{i}^{h}\right)+\boldsymbol{N}\left(P a_{i}^{h}\right)\right)} \prod_{x_{i}=x_{i}} \frac{\Gamma\left(\alpha\left(x_{i}, P a_{i}^{h}\right)+\boldsymbol{N}\left(x_{i}, P a_{i}^{h}\right)\right)}{\Gamma\left(a\left(x_{i}, P a_{i}^{h}\right)\right)}\right]$
 $\Gamma(i)=(i-1)!$ for $i \in \mathbf{Z}^{+}$
Search for structure that maximizes score
- Decomposability $\operatorname{Score}(G: D)=\sum \operatorname{score}\left(X_{i} \mid \operatorname{Par}\left(X_{i}\right): \mathbf{N}_{\mathbf{x}_{i}, \operatorname{par}\left(X_{i j}\right.}\right)$

Common Properties

- Soundness: with sufficient data and computation, both learn correct structure
- Both learn structure from observations and can incorporate knowledge - Constrain-based is sensitive to errors in test

CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure

- Algorithm Max-Spanning-Tree-Structure
- Estimate $P(x)$ and $P(x, y)$ for all single random variables and pairs;

$$
\mathrm{I}(X ; \eta)=\mathrm{D}_{\mathrm{KL}}(P(X, \eta \| P(X) \cdot P(\eta)
$$

Build complete undirected graph:
variables as vertices, $\mathrm{l}(X ; \eta$ as edge weights

- $\boldsymbol{T} \leftarrow$ Build-MWST $(V \times V$, Weights) //Chow-Liu algorithm: weight function $\equiv 1$
- Set directional flow on T and place the CPTs on its edges (gradient learning)
- RETURN: tree-structured BBN with CPT values
- Advantage: Restricts hypothesis space and limits overfitting capability
- Disadvantage: It only searches a single parent and some available data may be lost

The "Sparse Candidate" Algorithm

- It builds a network structure with maximal score by limiting H to at most K parents for each variables in BBN ($\mathrm{K}<\mathrm{N}$)
Searching Candidate sets K: Based on D and B_{n-1}, select for each variable X_{i} a set of C^{n} io candidate parents.
Maximize : Find a network B_{n} maximizing Score ($\left.B_{n} \mid D\right)$ among networks Advantages: Overcoming the drawbacks of MSTS algorithm
CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure

- Learning Weights (Conditional Probability Tables)
- Given training data and network structure to learn target variable
- Naïve Bayesian network
- Given network structure and some training data to estimate unobserved variable values.

$$
\begin{aligned}
& \text { - Gradient ascent algorithm } \\
& \stackrel{\circ}{ } \text { Weight update rule }
\end{aligned} w_{i j k} \leftarrow w_{i j k}+r \sum_{x \in D} \frac{P_{h}\left(y_{i j}, u_{i k} / x\right)}{w_{i j k}}
$$

- Given training data to build a network structure

Build structure of Bayesian networks

- Constraint-Based
- Perform tests of conditional independence
- Search for network consistent with observed dependencies
- Intuitive; closely follows definition of BBNs
- Separates construction from form of Cl tests

CIS 830: Advanced Topics in Artificial Intelligence

Choosing Candidate Sets

- Discrepancy
- Based on definition of the mutual information, it uses discrepancy between estimate $\mathrm{P}_{\mathrm{B}}(\mathrm{X}, \mathrm{Y})$ and the empirical estimate $\mathrm{P}^{\prime}(\mathrm{X}, \mathrm{Y})$.

$$
\mathbf{M}_{\text {disc }}\left(X_{b} X_{j} / \mathrm{B}\right)=\mathrm{D}_{\mathrm{KL}}\left(\mathrm{P}^{\prime}\left(\mathrm{X}_{i}, \mathrm{X}_{j}\right) / / \mathrm{P}_{\mathrm{B}}\left(\mathrm{X}_{i j} \mathrm{X}_{j}\right)\right)
$$

- Algorithm
- For the first loop: $\mathrm{M}_{\text {disc }}\left(\mathrm{X}_{i}, \mathrm{X}_{j} / \mathrm{B}_{0}\right)=\mathrm{I}(\mathrm{X}: Y)$.
- Loop for each $X_{i} I=1, \ldots, n$

Calculate $\mathbf{M}\left(\mathbf{X}_{i}, X_{i}\right)$ for all $\mathbf{X}_{i}!=X_{i}$ such that $\mathbf{X}_{i} \notin \mathbf{P a}\left(\mathbf{X}_{i}\right)$;
Choose $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-1}$ with highest ranking, with $l=\left|\mathrm{Pa}\left(\mathrm{X}_{j}\right)\right|$;
Set $\mathrm{C}_{i}=\mathrm{Pa}\left(\mathrm{X}_{j}\right) \cup\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-1}\right\}$;
return $\left\{\mathrm{C}_{i}\right\}$;

- Stopping criteria

Score-based and Candidate-based criteria B

- Example

If $I(A ; C)>I(A ; D)>I(A ; B)$

CIS 830: Advanced Topics in Artificial Intelligence

Choosing Candidate Sets

- Shield Measure
- Conditional mutual information - to measure the error of our assume that X and Y
are independent given different values of Z

- Shield score
$\mathrm{M}_{\text {shield }}\left(\mathrm{X}_{i}, \mathrm{X}_{j} \mid \mathrm{B}\right)=\mathbf{I}\left(\mathrm{X}_{i}, \mathrm{X}_{j} \mid \mathrm{Pa}\left(\mathrm{X}_{i}\right)\right)$
Deficiency: It doesn't take into account the cardinality of various variables
Score Measure
- Handles random variables with multiple values
- Chain rule of mutual information
$1\left(\mathrm{X}_{i} ; \mathrm{X}_{j} \mid \operatorname{Pa}\left(\mathrm{X}_{i}\right)\right)=\mathrm{I}\left(\mathrm{X}_{i} ; \mathrm{X}_{j} \mid \operatorname{Pa}\left(\mathrm{X}_{i}\right)\right)-1\left(\mathrm{X}_{i} ; \mathrm{Pa}\left(\mathrm{X}_{i}\right)\right.$
- Shield measure
$\mathrm{M}_{\text {shield }}\left(\mathrm{X}_{\vec{p}} \mathrm{X}_{j} \mid \mathrm{B}\right)=\mathbf{I}\left(\mathrm{X}_{p} \mathrm{X}_{j} \mid \mathrm{Pa}\left(\mathrm{X}_{j}\right)\right)$
- Score measure
$\mathbf{M}_{\text {score }}\left(\mathbf{X}_{i} \mathbf{X}_{j} \mid \mathbf{B}\right)=\operatorname{Score}\left(\mathbf{X}_{i}, \mathbf{X}_{j} \mid \mathbf{P a}\left(\mathbf{X}_{i}\right), \mathbf{D}\right)$

Learning with Small Candidate Sets

Maximal Restrict Bayesian Network (MRBN)

- Input: A set $D=\left\{X^{1}, \ldots, X^{n}\right\}$ of instances; a digraph H of bounded in-degree K; and a decomposable score S
- Output: A network $B=\langle G, \Theta>$ so that $G \subseteq H$, that maximizes S with respect to D

Standard Heuristics

- No knowledge of expected structure, local change (e.g. arc deletion, arc addtition, and arc reversal), and local maximum score
- Algorithms: Greedy hill-climbing; Best-first search; and Simulated annealing
- Time complexity In Greedy hill climbing is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for initial change, then becomes linear $\mathrm{O}(\mathrm{n})$ for each iteration
Time complexity in MRBN is $\mathbf{O}(\mathbf{k n})$ for initial calculation, then becomes $\mathbf{O}(\mathbf{k})$

Divide and Conquer Heuristics

- Input: A digraph $H=\left\{X_{i} \rightarrow X_{i}: X_{i} \in C_{i}\right\}$, and a set of weights $w\left(X_{i}, Y\right)$ for each $X_{i}, Y \in C_{i}$
- Output: An acyclic subgraph $G \subseteq H$ that maximizes $W_{H}[G]=\sum_{i} w\left(X_{i}, P a\left(X_{i}\right)\right)$
- Decompose H by using standard graph decomposition methods

Find a local maximum weight
Combine them into a global solution
CIS 830: Advanced Topics in Artificial Intelligence

Experimental Evaluation

