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• Paper
– “Learning Bayesian Network Structure from Massive Datasets:
       The ‘Sparse Candidate’ Algorithm”
– Author: Nir Friedman,  Iftach Nachman  and  Dana Peer,
                     Hebrew University, Israel

• Overview
– Introduction to Bayesian Network
– Outline  of  “Sparse Candidate” Algorithm
– How to Choose Candidate Sets
– Learning with Small Candidate Sets
– Experimental Evaluation

• Goal
– Introduces an algorithm that achieves a faster learning by restricting the search

space
• References

– Machine learning,    T. M. Mitchell
– Artificial Intelligence: A Modern Approach,  S. J. Russell   and P. Norvig
– Bayesian Networks without Tears,   E.  Charniak
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• Issues

– How to guarantee all available candidate parents are selected

– What is the criteria to stop its iteration to get a maximum score of network

– Strengths: It presents a very useful algorithm to restrict search space in BBN

– Weaknesses: It doesn’t consider spurious dependent variables

• Outline

– Why learn a Bayesian network

– Introduction to Bayesian network

º Terminology of Bayesian network

º What is Bayesian network

º How to construct a Bayesian network

– “Sparse Candidate” algorithms

º Maximize spanning tree structure

º “Sparse candidate” algorithm

– How to select candidate parents

– How to find the maximize score of a Bayesian network

– Experimental Evaluation
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•  Independence
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•  Causality

Introduction to Bayesian NetworkIntroduction to Bayesian Network

•      Why learn a Bayesian network?
– Solves the uncertain problems that are difficult for logic inference
– Combines knowledge engineering and statistical induction
– Covers the whole spectrum from knowledge-intensive model construction to
     data-intensive model induction
–  More than a learning black-box
–  Causal representation, reasoning, and discovery
–  Increasing interests in AI
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–   Block Conditions

 Z is in E and Z has one arrow on the path leading in and one arrow out

(2)   Z is in E and Z has both path arrows leading out

(3)   Neither Z nor any descendant of Z is in E, and both arrows lead in to Z

•   Terminology of Bayesian network
–  Conditional Independence
   If every undirected path from a node in X to a node in Y is d-separated by

E, then X and Y are conditionally independent given E.
–  D-separate
     A set of node E d-separates two sets of nodes X and Y if every undirected

path from a node in X to a node in Y is blocked given E.

Bayesian NetworksBayesian Networks
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• Bayesian Network
     A directed acyclic graph that represents a joint probability distribution for a set of

random variables.

– Vertices (nodes): denote events (each a random variable)

– Edges (arcs, links): denote conditional dependencies

– Conditional probability tables (CPT)

– Assumptions - Each node is asserted to be conditionally dependent of its
nondescendants,  given its immediate parents

• Chain Rule for (Exact) inference in Bayesian networks

                P(X1, X2, …, Xn) = ∏n
i=1 P(Xi | Pa(Xi))

• Example

Bayesian NetworksBayesian Networks

Family-out (fo) Bowel-problem (bp)

Light-on (lo) Dog-out (do)

Hear-bark (hb)

P(fo) = .15 P(bp) = .01

P(lo |fo) = .6
P(lo | ¬fo)= .05

P(hb |do) = .7
P(hb | ¬do) = .01

P(do | fo bp) = .99
P(do | fo ¬bp) = .90
P(do | ¬fo bp) = .97
P(do | ¬fo bp) = .3
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– Score-Based

• Define scoring function (aka score) that evaluates how well (in)dependencies in a
structure match observations, such as Bayesian score and MDL

° Bayesian Score for Marginal Likelihood P(D|h)

• Search for structure that maximizes score

• Decomposability       Score(G:D) = ∑score(Xi  | Par(Xi ) : Nxi, par( Xi) )

                                                      
 i

– Common Properties

• Soundness: with sufficient data and computation, both learn correct structure

• Both learn structure from observations and can incorporate knowledge

• Constrain-based is sensitive to errors in test

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( )
( ) ( ) +

= =

∈−=

≡≡≡≡











 +
⋅

+
∝ ∏ ∏∏

Ziii

xParentsPaPa ,Xxx 

 
Pa ,x

Pa ,xNPa ,x
 

PaNPa

Pa
h|DP

ih
hh

iiji

n

i xX
h

i

h
i

h
i

Pa
hh

h

iki

ii i

ii

h
i ii

i

 for  !1

 of value particular of value particularwhere

1

,

Bayesian NetworksBayesian Networks

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

Learning StructureLearning Structure

• Learning Weights (Conditional Probability Tables)
– Given training data and network structure to learn target variable

• Naïve Bayesian network

– Given network structure and some training data to estimate unobserved
variable values.

• Gradient ascent algorithm

° Weight update rule

– Given training data to build a network structure

• Build structure of Bayesian networks
– Constraint-Based

• Perform tests of conditional independence

• Search for network consistent with observed dependencies

• Intuitive; closely follows definition of BBNs

• Separates construction from form of CI tests
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Learning StructureLearning Structure

• Algorithm Max-Spanning-Tree-Structure
– Estimate P(x) and P(x, y) for all single random variables and pairs;

            I(X; Y) = DKL(P(X, Y) || P(X) · P(Y))

– Build complete undirected graph:

      variables as vertices, I(X; Y) as edge weights

– T ← Build-MWST (V × V, Weights)     // Chow-Liu algorithm: weight function ≡ I

– Set directional flow on T and place the CPTs on its edges (gradient learning)

– RETURN: tree-structured BBN with CPT values

– Advantage: Restricts hypothesis space and limits overfitting capability

– Disadvantage: It only searches a single parent and some available data may be lost

• The “Sparse Candidate” Algorithm
– It builds a network structure with maximal score by limiting H to at most K parents

     for each variables in BBN (K < N)

– Searching Candidate sets K: Based on D and Bn-1, select for each variable Xi a set of
Cn

i of candidate parents.

– Maximize : Find a network  Bn maximizing Score (Bn |D)  among networks

– Advantages: Overcoming the drawbacks of MSTS algorithm
Kansas State University
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• Discrepancy
– Based on definition of the mutual information, it uses discrepancy between

estimate  PB (X, Y) and the empirical estimate P’(X, Y).

          Mdisc (Xi, Xj | B) = DKL ( P’(X i, Xj ) || PB (Xi, Xj))

–  Algorithm

• For the first loop: Mdisc (Xi, Xj | B0) = I (X: Y).

• Loop for each Xi  I = 1, … , n

    Calculate M(Xi, Xj) for all Xj  != Xi such that Xi ∉ Pa(Xj);

    Choose x1,…, xk-l with highest ranking, with l = |Pa(Xj)|;

    Set Ci = Pa(Xj) ∪  {x1,…, xk-1};

     return  {Ci};
• Stopping criteria

    Score-based and Candidate-based criteria

• Example
       If   I (A; C)  > I (A; D) > I (A; B)

B

D

C

A

Choosing Candidate SetsChoosing Candidate Sets
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Choosing Candidate SetsChoosing Candidate Sets

• Shield Measure
– Conditional mutual information -  to measure the error of our assume that  X and Y

     are independent given different values of Z

         I (X; Y | Z) = ∑Z P’(Z) DKL(P’(X, Y |Z) || P’(X| Z) P’(Y | Z))
–  Shield score

        Mshield (Xi, Xj  | B) = I (Xi, Xj | Pa(Xi ))

–  Deficiency: It doesn’t take into account the cardinality of various variables

• Score Measure
– Handles random variables with multiple values

– Chain rule of mutual information

         I( Xi; Xj | Pa(Xi)) = I (Xi; Xj | Pa(Xi)) - I ( Xi ;  Pa(Xi)

–  Shield measure

          Mshield (Xi, Xj  | B) = I (Xi, Xj | Pa(Xi ))

–  Score measure

          MScore (Xi, Xj  | B) = Score (Xi, Xj | Pa(Xi ), D)

Kansas State University
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• Maximal Restrict Bayesian Network (MRBN)
– Input:   A set D = {X1, …, Xn } of instances; a digraph H of bounded in-degree K;

                  and a decomposable score S

– Output: A network B = <G, Θ> so that G ⊆ H, that maximizes S with respect to D

• Standard Heuristics
– No knowledge of expected structure, local change (e.g. arc deletion, arc addtition,

     and arc reversal), and local maximum score

– Algorithms: Greedy hill-climbing; Best-first search; and Simulated annealing

– Time complexity In Greedy hill climbing is O(n2) for initial change, then

      becomes linear O(n) for each iteration

– Time complexity in MRBN is O(kn) for initial calculation, then becomes O(k)

• Divide and Conquer Heuristics
– Input: A digraph H = {Xj -> Xi  : Xj ∈ Ci}, and a set of weights w(Xi ,Y) for each Xi, Y ∈ Ci

– Output: An acyclic subgraph G⊆ H that maximizes  WH [G] = ∑ i w(Xi , Pa(Xi))

– Decompose H by using standard graph decomposition methods

– Find a local maximum weight

– Combine them into a global solution.

Learning with Small Candidate SetsLearning with Small Candidate Sets



3

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

• Strongly Connected Components: (SCC)
– A subset of vertices A is strongly connected if  for each X, Y ∈ A, there is a

directed path from X to Y and a directed path from Y to X

– Decomposition of SCC into maximal sets that have no strongly connected
components

• Separator Decomposition
– Searching a separator of H which separate H into H1 and H2 with no edges

between them

• Cluster-Tree Decomposition
– Cluster tree definition

– Decomposing into cluster tree

• Cluster-Tree Heuristic
– A mixture of cluster-tree decomposition algorithm and standard heuristics

– Using for the decomposition of H for large size clusters

DecompositionDecomposition
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• Using TABU search to find
   global max score
• “Alarm” network

– Samples: 10000
– variables: 37
– including 13 have 2 values, 22

have 3 values, and 2 have 4
values

• Text Test
– Samples: 20 * 1000 sets

       Method     Iter  Time  Score      KL     Stats
   Greedy            40   -15.35    0.0499   2656

   Disc 5       1    14   -18.41    3.0608   908

                2    19   -16.71    1.3634   1063

                3    23   -16.21    0.8704   1183

   Disc 10      1    20   -15.53    0.2398   1235

                2    26   -15.43    0.1481   1512

                3    32   -15.43    0.1481   1733

   Shld 5       1    14   -17.50    2.1675   915

                2    29   -17.25    1.8905   1728

                3    36   -16.92    1.5632   1907

   Shid 10      1    20   -15.86    0.5357   1244

                2    35   -15.50    0.1989   1968

                3    41   -15.50    0.1974   2109

   Score 5      1    12   -15.94    0.6756   893

                2    27   -15.34    0.0550   1838

                3    34   -15.33    0.0479   2206

   Score 10     1    17   -15.54    0.2559   1169

                2    30   -15.31    0.0352   1917

                3    34   -15.31    0.0352   2058

Experimental EvaluationExperimental Evaluation
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SummarySummary

Content Critique
•   Key Contribution - It presents an algorithm to select candidate sets and to discover

                                             efficiently the maximum score of Bayesian networks.
•   Strengths

–   It uses scoring measure instead of mutual information to measure the dependency
  of parent and children, then uses the maximum score to build BBN

–   This algorithm can allow children to have multiple parents and handle  random
  variables with multiple values.

–   The limited candidate sets provide a small hypothesis space
–   The time complexity of searching the maximum score in  BBN is linear
–   It is especially efficient for massive datasets

•   Weaknesses
–   It doesn’t consider the existing of spurious dependency of random variables
–   The search of candidate sets is complex.
–   It is no better for small datasets than standard heuristic algorithms

Presentation Critique
•   Audiences: Medical diagnosis; Mapping learning; language understanding;

                        Image processing
•   Positive points: Presents a useful approach in building BBN structure
•   Negative points: No comparison with other algorithms


