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Learning Bayesian Network Structure

Lecture 21Lecture 21

Kansas State University
Department of Computing and Information SciencesCIS 830: Advanced Topics in Artificial Intelligence

Lecture OutlineLecture Outline

• Suggested Reading: Section 6.11, Mitchell

• Overview of Bayesian Learning (Continued)

• Bayes’s Theorem (Continued)

– Definition of conditional (posterior) probability

– Ramifications of Bayes’s Theorem

• Answering probabilistic queries

• MAP hypotheses

• Generating Maximum A Posteriori (MAP) Hypotheses

• Generating Maximum Likelihood Hypotheses

• Later

– Applications of probability in KDD

• Learning over text

• Learning over hypermedia documents

• General HCII (Yuhui Liu: March 13, 2000)

– Causality (Yue Jiao: March 17, 2000)
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Probability:Probability:
Basic Definitions and AxiomsBasic Definitions and Axioms

• Sample Space (Ω): Range of a Random Variable X

• Probability Measure Pr(•)

– Ω denotes a range of outcomes; X: Ω

– Probability P: measure over 2Ω (power set of sample space, aka event space)

– In a general sense, Pr(X = x ∈ Ω) is a measure of belief in X = x

• P(X = x) = 0 or P(X = x) = 1: plain (aka categorical) beliefs (can’t be revised)

• All other beliefs are subject to revision

• Kolmogorov Axioms

– 1. ∀x ∈ Ω . 0 ≤ P(X = x) ≤ 1

– 2. P(Ω) ≡ ∑x ∈ Ω P(X = x) = 1

– 3.

• Joint Probability: P(X1 ∧ X2) ≡ Probability of the Joint Event X1 ∧ X2

• Independence: P(X1 ∧ X2) = P(X1) • P(X2)
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Choosing HypothesesChoosing Hypotheses

( )[ ]xfmaxarg
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• Bayes’s Theorem

• MAP Hypothesis

– Generally want most probable hypothesis given the training data

– Define:                         ≡ the value of x in the sample space Ω with the highest f(x)

– Maximum a posteriori hypothesis, hMAP

• ML Hypothesis

– Assume that p(hi) = p(hj) for all pairs i, j (uniform priors, i.e., PH ~ Uniform)

– Can further simplify and choose the maximum likelihood hypothesis, hML
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Bayes’sBayes’s  Theorem: Theorem:
Query Answering (QA)Query Answering (QA)

• Answering User Queries
– Suppose we want to perform intelligent inferences over a database DB

• Scenario 1: DB contains records (instances), some “labeled” with answers

• Scenario 2: DB contains probabilities (annotations) over propositions

– QA: an application of probabilistic inference

• QA Using Prior and Conditional Probabilities: Example
– Query: Does patient have cancer or not?

– Suppose: patient takes a lab test and result comes back positive

• Correct + result in only 98% of the cases in which disease is actually present

• Correct - result in only 97% of the cases in which disease is not present

• Only 0.008 of the entire population has this cancer

– α ≡ P(false negative for H0 ≡ Cancer) = 0.02 (NB: for 1-point sample)

– β ≡ P(false positive for H0 ≡ Cancer) = 0.03 (NB: for 1-point sample)

– P(+ | H0) P(H0) = 0.0078, P(+ | HA) P(HA) = 0.0298 ⇒ hMAP = HA ≡ ¬Cancer
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Basic Formulas for ProbabilitiesBasic Formulas for Probabilities

• Product Rule (Alternative Statement of Bayes’s Theorem)

– Proof: requires axiomatic set theory, as does Bayes’s Theorem

• Sum Rule

– Sketch of proof (immediate from axiomatic set theory)

• Draw a Venn diagram of two sets denoting events A and B

• Let A ∪ B denote the event corresponding to A ∨ B…

• Theorem of Total Probability

– Suppose events A1, A2, …, An are mutually exclusive and exhaustive

• Mutually exclusive: i ≠ j ⇒ Ai ∧ Aj = ∅

• Exhaustive: ∑ P(Ai) = 1

– Then

– Proof: follows from product rule and 3rd Kolmogorov axiom
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MAP and ML Hypotheses:MAP and ML Hypotheses:
A Pattern Recognition FrameworkA Pattern Recognition Framework

• Pattern Recognition Framework
– Automated speech recognition (ASR), automated image recognition

– Diagnosis

• Forward Problem: One Step in ML Estimation
– Given: model h, observations (data) D

– Estimate: P(D | h), the “probability that the model generated  the data”

• Backward Problem: Pattern Recognition / Prediction Step
– Given: model h, observations D

– Maximize: P(h(X) = x | h, D) for a new X (i.e., find best x)

• Forward-Backward (Learning) Problem
– Given: model space H, data D

– Find: h ∈ H such that P(h | D) is maximized (i.e., MAP hypothesis)

• More Info
– http://www.cs.brown.edu/research/ai/dynamics/tutorial/Documents/

HiddenMarkovModels.html

– Emphasis on a particular H (the space of hidden Markov models)
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Bayesian Learning Example:Bayesian Learning Example:
Unbiased Coin [1]Unbiased Coin [1]

• Coin Flip

– Sample space: Ω = {Head, Tail}

– Scenario: given coin is either fair or has a 60% bias in favor of Head

• h1 ≡ fair coin: P(Head) = 0.5

• h2 ≡ 60% bias towards Head: P(Head) = 0.6

– Objective: to decide between default (null) and alternative hypotheses

• A Priori (aka Prior) Distribution on H

– P(h1) = 0.75, P(h2) = 0.25

– Reflects learning agent’s prior beliefs regarding H

– Learning is revision of agent’s beliefs

• Collection of Evidence

– First piece of evidence: d ≡ a single coin toss, comes up Head

– Q: What does the agent believe now?

– A: Compute P(d) = P(d | h1) P(h1) + P(d | h2) P(h2)
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Bayesian Learning Example:Bayesian Learning Example:
Unbiased Coin [2]Unbiased Coin [2]

• Bayesian Inference: Compute P(d) = P(d | h1) P(h1) + P(d | h2) P(h2)

– P(Head) = 0.5 • 0.75 + 0.6 • 0.25 = 0.375 + 0.15 = 0.525

– This is the probability of the observation d = Head

• Bayesian Learning

– Now apply Bayes’s Theorem

• P(h1 | d) = P(d | h1) P(h1) / P(d) = 0.375 / 0.525 = 0.714

• P(h2 | d) = P(d | h2) P(h2) / P(d) = 0.15 / 0.525 = 0.286

• Belief has been revised downwards for h1, upwards for h2

• The agent still thinks that the fair coin is the more likely hypothesis

– Suppose we were to use the ML approach (i.e., assume equal priors)

• Belief is revised upwards from 0.5 for h1

• Data then supports the bias coin better

• More Evidence: Sequence D of 100 coins with 70 heads and 30 tails

– P(D) = (0.5)50 • (0.5)50 • 0.75 + (0.6)70 • (0.4)30 • 0.25

– Now P(h1 | d) << P(h2 | d)
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Bayesian Concept LearningBayesian Concept Learning
and Version Spacesand Version Spaces

• Assumptions

– Fixed set of instances <x1, x2, …, xm>

– Let D denote the set of classifications: D = <c(x1), c(x2), …, c(xm)>

• Choose P(D | h)

– P(D | h) = 1 if h consistent with D (i.e.,∀ xi . h(xi) = c(xi))

– P(D | h) = 0 otherwise

• Choose P(h) ~ Uniform

– Uniform distribution:

– Uniform priors correspond to “no background knowledge” about h

– Recall: maximum entropy

• MAP Hypothesis
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• Start with Uniform Priors

– Equal probabilities assigned to each hypothesis

– Maximum uncertainty (entropy), minimum prior information

• Evidential Inference

– Introduce data (evidence) D1: belief revision occurs

• Learning agent revises conditional probability of inconsistent hypotheses to 0

• Posterior probabilities for remaining h ∈ VSH,D revised upward

– Add more data (evidence) D2: further belief revision

Evolution of Posterior ProbabilitiesEvolution of Posterior Probabilities

P(h)

Hypotheses

P(h|D1)

Hypotheses

P(h|D1, D2)

Hypotheses
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Most Probable ClassificationMost Probable Classification
of New Instancesof New Instances

• MAP and MLE: Limitations

– Problem so far: “find the most likely hypothesis given the data”

– Sometimes we just want the best classification of a new instance x, given D

• A Solution Method

– Find best (MAP) h, use it to classify

– This may not be optimal, though!

– Analogy

• Estimating a distribution using the mode versus the integral

• One finds the maximum, the other the area

• Refined Objective

– Want to determine the most probable classification

– Need to combine the prediction of all hypotheses

– Predictions must be weighted by their conditional probabilities

– Result: Bayes Optimal Classifier (see CIS 798 Lecture 10)
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Midterm Review:Midterm Review:
Topics CoveredTopics Covered

• Review: Inductive Learning Framework

– Search in hypothesis space H

– Inductive bias: preference for some hypotheses over others

– Search in space of hypothesis languages: bias optimization

• Analytical Learning

– Learning architecture components: hypothesis languages, domain theory

– Learning algorithms: EBL, hybrid (analytical and inductive) learning

• Artificial Neural Networks (ANN)

– Architectures (hypothesis languages): MLP, Boltzmann machine, GLIM hierarchy

– Algorithms: backpropagation (gradient), MDL, EM

– Tradeoffs and improvements: momentum, wake-sleep, modularity / HME

• Bayesian Networks

– Learning architecture: BBN (graphical model of probability)

– Learning algorithms: CPT (e.g., gradient); structure (polytree, K2)

– Tradeoffs and improvements: polytrees vs. multiply-connected BBNs, etc.
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Midterm Review:Midterm Review:
Applications and ConceptsApplications and Concepts

• Methods for Multistrategy (Integrated Inductive and Analytical) Learning

– Analytical learning to drive inductive learning: EBNN, Phantom Induction, advice-

taking agents

– Interleaved analytical and inductive learning: Chown and Dietterich

• Artificial Neural Networks in KDD

– Tradeoffs and improvements

• Reinforcement learning models: temporal differences, ANN methods

• Wake-sleep

• Modularity (mixture models and hierarchical mixtures of experts)

• Combining classifiers

– Applications to KDD: learning for pattern (e.g., image) recognition, planning

• Bayesian Networks in KDD

– Advantages of probability, causal networks (BBNs)

– Applications to KDD: learning to reason
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TerminologyTerminology

• Introduction to Bayesian Learning

– Probability foundations

– Definitions: subjectivist, frequentist, logicist, objectivist

– (3) Kolmogorov axioms

• Bayes’s Theorem

– Prior probability of an event

– Joint probability of an event

– Conditional (posterior) probability of an event

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses

– MAP hypothesis: highest conditional probability given observations (data)

– ML: highest likelihood of generating the observed data

– ML estimation (MLE): estimating parameters to find ML hypothesis

• Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model

• Bayesian Learning: Searching Model (Hypothesis) Space using CPs
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Summary PointsSummary Points

• Introduction to Bayesian Learning

– Framework: using probabilistic criteria to search H

– Probability foundations

• Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist

• Kolmogorov axioms

• Bayes’s Theorem

– Definition of conditional (posterior) probability

– Product rule

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses

– Bayes’s Rule and MAP

– Uniform priors: allow use of MLE to generate MAP hypotheses

– Relation to version spaces, candidate elimination

• Next Class: Presentation on Learning Bayesian (Belief) Network Structure

– For more on Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes

– Soon: user modeling using BBNs, causality


