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Probability:

Lecture Outline

Suggested Reading: Section 6.11, Mitchell

Overview of Bayesian Learning (Continued)
Bayes'’s Theorem (Continued)

— Definition of conditional (posterior) probability
— Ramifications of Bayes's Theorem

+ Answering probabilistic queries
* MAP hypotheses
Generating Maximum A Posteriori (MAP) Hypotheses
Generating Maximum Likelihood Hypotheses
« Later
— Applications of probability in KDD
« Learning over text
+ Learning over hypermedia documents
« General HCII (Yuhui Liu: March 13, 2000) .
— Causality (Yue Jiao: March 17, 2000) KS“
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Basic Definitions and Axioms
Sample Space (Q): Range of a Random Variable X
« Probability Measure Pr(s)

— Qdenotes arange of outcomes; X: Q

— Probability P: measure over 22 (power set of sample space, aka event space)
— Inageneral sense, Pr(X = x [ Q) is ameasure of belief in X=x

* P(X=x)=0or P(X=x)=1: plain (aka categorical) beliefs (can't be revised)
« All other beliefs are subject to revision
Kolmogorov Axioms
~ 1.0x0Q.0<PX=x)<1
- 2PQ =3 PX=X)=1
- 3.0X,X,,... 0i#j0 X,0X,=0.

P XS Px,

)

Joint Probability: P(X; [0 X,) = Probability of the Joint Event X; 0 X, )
Independence: P(X, 0X,) = P(X,) + P(X) KSU
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Bayes's Theorem:

Query Answering (QA)

Answering User Queries

— Suppose we want to perform intelligent inferences over a database DB
« Scenario 1: DB contains records (instances), some “labeled” with answers
« Scenario 2: DB contains probabilities (annotations) over propositions
— QA: an application of probabilistic inference

QA Using Prior and Conditional Probabilities: Example

— Query: Does patient have cancer or not?

— Suppose: patient takes a lab test and result comes back positive

« Correct + result in only 98% of the cases in which disease is actually present
« Correct - result in only 97% of the cases in which disease is not present
« Only 0.008 of the entire population has this cancer

— o= P(false negative for H, = Cancer) = 0.02 (NB: for 1-point sample)

— B = P(false positive for H, = Cancer) = 0.03 (NB: for 1-point sample)
P(cancer)=0.008 P(+/cancer)=0.98 P(+/~Cancer)=0.03
P(~Cancer)=0.992 P(-/cancer)=0.02 P(-/~Cancer)=0.97

— P(+| Hy) P(Hp) = 0.0078, P(+ | H) P(H,) = 0.0298 0 hy,,, = H,= - Cancer
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Choosing Hypotheses

« Bayes's Theorem

P(h/D)zsz(hDD)

) (0) P(D)
* MAP Hypothesis

— Generally want most probable hypothesis given the training data
— Define: arg "Z%X[f(x)] =the value of x in the sample space Q with the highest f(x)
— Maximum a posteriori hypothesis, hy,p

Buse = argmax P(h | D)

= arg max PLOLP()
=argmax P(D/h)P(h)
* ML Hypothesis
— Assume that p(h) = p(h)) for all pairs i, j (uniform priors, i.e., P, ~ Uniform)
— Can further simplify and choose the maximum likelihood hypothesis, h,,

hy, =argmax P(D[h,) :
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Basic Formulas for Probabilities

Product Rule (Alternative Statement of Bayes's Theorem)

P(A|B)= LPA(;)B )

— Proof: requires axiomatic set theory, as does Bayes’'s Theorem
Sum Rule

P(ADB)=P(A)+P(B)-P(ADB)
— Sketch of proof (immediate from axiomatic set theory)
« Draw a Venn diagram of two sets denoting events A and B
+ Let A0 Bdenote the event corresponding to A O B...
« Theorem of Total Probability
— Suppose events A;, A,, ..., A,are mutually exclusive and exhaustive
* Mutually exclusive: i #j0 A;0A; =0
« Exhaustive: § P(A) =1
_ Then P(B)=Y P(B/A)P(4)
— Proof: fo\lows’rfrom product rule and 3" Kolmogorov axiom K’Sm
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MAP and ML Hypotheses: Bayesian Learning Example:

A Pattern Recognition Framework
Pattern Recognition Framework

Unbiased Coin [1]

« Coin Flip
- A.u!omaled speech recognition (ASR), automated image recognition _ Sample space: Q = {Head, Tail}
- Diagnosis . . . — Scenario: given coin is either fair or has a 60% bias in favor of Head
« Forward Problem: One Step in ML Estimation .
) . * h; =fair coin: P(Head) = 0.5
— Given: model h, observations (data) D i
— Estimate: P(D| h), the “probability that the model generated _ the data” + h;=60%bias towards Head: P(Head) = 0.6

Backward Problem: Pattern Recognition / Prediction Step — Objective: to decide between default (null) and alternative hypotheses
— Given: model h, observations D A Priori (aka Prior) Distribution on H
— Maximize: P(h(X) = x| h, D) for anew X (i.e., find best x)

— P(h)=0.75, P(h,)=0.25
+ Forward-Backward (Learning) Problem — Reflects learning agent's  prior beliefs regarding H
— Given: model space H, data D

Learning is revision of agent's beliefs
— Find: h O Hsuch that P(h | D) is maximized (i.e., MAP hypothesis) . .
+ Collection of Evidence
* More Info
— http://www.cs.brown.edu/research/ai/dynamics/tutorial/Documents/

— First piece of evidence: d =a single coin toss, comes up Head
HiddenMarkovModels.html

— Q: What does the agent believe now?

— Emphasis on a particular H (the space of hidden Markov models) K : — A: Compute P(d) = P(d| hy) P(h;) + P(d | h,) P(h,) K i
: ‘
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Bayesian Learning Example: Bayesian Concept Learning

Unbiased Coin [2]

and Version Spaces

« Bayesian Inference: Compute P(d) = P(d | hy) P(h,) + P(d | h,) P(h,) « Assumptions
— P(Head)=0.5+0.75+ 0.6 + 0.25 = 0.375 + 0.15 = 0.525 — Fixed set of instances <xj, X,, ..., X,
— This is the probability of the observation d = Head — Let Ddenote the set of classifications: D = <c(x,), ¢(X,), ..., ¢(X,)>
« Bayesian Learning « Choose P(D| h)
— Now apply Bayes's Theorem — P(D| h)=1if hconsistent with D (i.e..0 x;. h(x) = c(x))
. h =Pd|h hy)/ =0.375/0.525=0.714
P(hy| d) = P(d| hy) P(hy) | P(d) _ P(D| h)=0otherwise
« P(h,| d)=P(d| hy) P(h,) | P(d) = 0.15/ 0.525 = 0.286 )
‘ ’ 2 * Choose P(h) ~ Uniform
« Belief has been revised downwards for h,, upwards for h, 1
A . L " . - . Plh)=—
+ The agent still thinks that the fair coin is the more likely hypothesis Uniform distribution: ( ) IH|
— Suppose we were to use the ML approach (i.e., assume equal priors) — Uniform priors correspond to “no background knowledge” about h
« Belief is revised upwards from 0.5 for h, - Recall: maximum entropy
« Datathen supports the bias coin better * MAP Hypothesis
* More Evidence: Sequence D of 100 coins with 70 heads and 30 tails 0 1 i hisconsistent with D
— P(D) = (0.5 (0.5)%+ 0.75 + (0.6)70~ (0.4)¥+ 0.25 P(h/D)=HVS,, ]
— Now P(h, | d) << P(h,| d) K’s | 2 otherwise K,s }
i i
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Evolution of Posterior Probabilities Most Probable Classification

of New Instances

« Start with Uniform Priors ¢ MAP and MLE: Limitations
— Equal probabilities assigned to each hypothesis — Problem so far: “find the most likely hypothesis given the data”
— Maximum uncertainty (entropy), minimum prior information — Sometimes we just want the best classification of a new instance x, given D

« A Solution Method

— Find best (MAP) h, use it to classify
P(h) » P(h|D;) » P(h|D,, D,) — This may not be optimal, though!
— Analogy

« Estimating a distribution using the mode versus the integral
+ One finds the maximum, the other the area
_Hypotheses Hypotheses Hypotheses
« Evidential Inference

« Refined Objective
— Introduce data (evidence) D;: belief revision occurs

« Learning agent revises conditional probability of inconsistent hypotheses to 0 _ Need to combine the prediction of all hypotheses
« Posterior probabilities for remaining h 0 VS, prevised upward

— Predictions must be by their 1al p
— Add data (evid D further belief revi "
more data (evidence) D;: further belief revision Ks“ — Result: Bayes Optimal Classifier (see CIS 798 Lecture 10) K 1
B | B |
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— Want to determine the most probable classification
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Midterm Review:

Topics Covered

Review: Inductive Learning Framework

— Search in hypothesis space H
— Inductive bias: preference for some hypotheses over others
— Search in space of hypothesis languages: bias optimization
* Analytical Learning
— Learning architecture components: hypothesis languages, domain theory
— Learning algorithms: EBL, hybrid (analytical and inductive) learning
Artificial Neural Networks (ANN)
— Architectures (hypothesis languages): MLP, Boltzmann machine, GLIM hierarchy
— Algorithms: backpropagation (gradient), MDL, EM
— Tradeoffs and improvements: momentum, wake-sleep, modularity / HME

* Bayesian Networks
— Learning architecture: BBN (graphical model of probability)
— Learning algorithms: CPT (e.g., gradient); structure (polytree, K2)
— Tradeoffs and improvements: polytrees vs. multiply-connected BBNs, etc. K “
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Terminology

Introduction to Bayesian Learning

— Probability foundations

— Definitions: subjectivist, frequentist, logicist, objectivist
— (3) Kolmogorov axioms

« Bayes's Theorem

— Prior probability of an event

— Joint probability of an event

— Conditional (posterior) probability of an event

* Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
— MAP hypothesis: highest conditional probability given observations (data)
— ML: highest likelihood of generating the observed data
— ML estimation (MLE): estimating parameters to find ML hypothesis
« Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model

KSU
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« Bayesian Learning: Searching Model (Hypothesis) Space using CPs

Midterm Review:

Applications and Concepts

Methods for Multistrategy (Integrated Inductive and Analytical) Learning

— Analytical learning to drive inductive learning: EBNN, Phantom Induction, advice-
taking agents

— Interleaved analytical and inductive learning: Chown and Dietterich

Artificial Neural Networks in KDD
— Tradeoffs and improvements
+ Reinforcement learning models: temporal differences, ANN methods
+ Wake-sleep
* Modularity (mixture models and hierarchical mixtures of experts)
+ Combining classifiers
— Applications to KDD: learning for pattern (e.g., image) recognition, planning
« Bayesian Networks in KDD

— Advantages of probability, causal networks (BBNs)

— Applications to KDD: |earning to reason K i

i
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Summary Points

Introduction to Bayesian Learning
— Framework: using probabilistic criteria to search H
— Probability foundations
« Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist
« Kolmogorov axioms
* Bayes's Theorem
— Definition of conditional (posterior) probability
— Productrule
* Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
— Bayes's Rule and MAP
— Uniform priors: allow use of MLE to generate MAP hypotheses
— Relation to version spaces, candidate elimination
« Next Class: Presentation on Learning Bayesian (Belief) Network Structure
— For more on Bayesian learning: MDL, BOC, Gibbs, Simple (Naive) Bayes .
— Soon: user modeling using BBNs, causality Ksm
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