

Lecture Outline Readings Chapter 15, Mitchell References: Pearl and Verma; tutorials (Heckerman, Friedman and Goldszmidt) More <u>Bayesian Belief Networks (BBNs</u>) Inference: applying CPTs Learning: CPTs from data, elicitation In-class demo: Hugin (CPT elicitation, application) Learning BBN Structure - K2 algorithm Other probabilistic scores and search algorithms <u>Causal Discovery</u>: Learning <u>Causality</u> from Observations . Next Class: Last BBN Presentation (Yue Jiao: Causality) After Spring Break - KDD 15 Genetic Algorithms (GAs) / Programming (GP) CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure

- Problem Definition
 - Given: data D (tuples or vectors containing observed values of variables)
 - Return: directed graph (V, E) expressing target CPTs (or commitment to acquire) Benefits
- Efficient learning: more accurate models with less data P(A), P(B) vs. P(A, B)
 Discover <u>structural properties</u> of the domain (causal relationships)
- Acccurate Structure Learning: Issues
- Superfluous arcs: more parameters to fit; wrong assumptions about causality
 Missing arcs: cannot compensate using CPT learning; ignorance about causality
- Solution Approaches
 - Constraint-based: enforce consistency of network with observations
- Score-based: optimize degree of match between network and observations
- **Overview:** Tutorials
- [Friedman and Goldszmidt, 1998] <u>http://robotics.Stanford.EDU/people/nir/tutorial/</u>
 [Heckerman, 1999] http://www.research.microsoft.com/~heckerman

CIS 830: Advanced Topics in Artificial Intelligence

Constraint-Based

- Perform tests of conditional independence
- Search for network consistent with observed dependencies (or lack thereof)
- Intuitive; closely follows definition of BBNs
- Separates <u>construction</u> from <u>form of CI tests</u>
- Sensitive to errors in individual tests
- Score-Based
 - Define <u>scoring function</u> (aka <u>score</u>) that evaluates how well (in)dependencies in a structure match observations
 - Search for structure that maximizes score
 - Statistically and information theoretically motivated
- Can make compromises Common Properties
- Common Properties
 - Soundness: with sufficient data and computation, both learn correct structure
 Both learn structure from observations and can incorporate knowledge
- Both learn structure from observations and can incorporate knowledge

CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure: <u>M</u> aximum <u>W</u> eight <u>S</u> panning <u>T</u> ree (Chow-Liu)		
 Algorithm Learn-Tree-Structure-I (D) Estimate P(x) and P(x, y) for all single RVs, pairs; I(X; Y) = D(P(X, Y) P(X) · P(Y)) Build-complete undirected graph: variables as vertices, I(X; Y) as edge weights T ← Build-MWST (V × V, Weights) // Chow-Liu algorithm: weight function = I Set directional flow on T and place the CPTs on its edges (gradient learning) RETURN: tree-structured BBN with CPT values Algorithm Build-MWST-Kruskal (E ⊂ V × V, Weights: E → R*) 		
 <i>H</i> ← <i>Build-Heap</i> (<i>E</i>, <i>Weights</i>) <i>E'</i> ← Ø; <i>Forest</i> ← {{v} v ∈ V} WHILE <i>Forest</i>.<i>Size</i> > 1 DO 	// aka priority queue // E': <u>set</u> ; Forest: <u>union-find</u> // e = new edge from H e \leftarrow Forest.Find(e.End))) THEN // append edge e; E'.Size++ // Forest.Size	O(lg* <i>E</i>]) O(1) O(1) O(1) O(1)
CIS 830: Advanced Topics in Artificial Intelligence Rareas State Department of Computing and Information		

Scores for Learning Structure: Prior over Parameters

• Likelihood L(⊕ : D)

- Definition: $L(\Theta : D) \equiv P(D \mid \Theta) = \prod_{x \in D} P(x \mid \Theta)$
- General BBN (<u>i.i.d data x</u>): L(⊖: D) = ∏_{x ∈ D}∏_i P(x_i | Parents(x_i) ~ ⊖) = ∏_i L(⊖_i: D)
 NB: ⊖ specifies CPTs for Parents(x_i)
- Likelihood decomposes according to the structure of the BBN
- Estimating Prior over Parameters: $P(\Theta \mid D) \propto P(D) \cdot P(D \mid \Theta) \equiv P(D) \cdot L(\Theta : D)$
 - Example: Sprinkler
 - Scenarios D = {(Season(i), Sprinkler(i), Rain(i), Moisture(i), Slipperiness(i))}
 P(Su, Off, Dr, Wet, NS) = P(S) · P(O | S) · P(D | S) · P(W | O, D) · P(N | W)
 - MLE for <u>multinomial distribution</u> (e.g., {Spring, Summer, Fall, Winter}): $\hat{\Theta}_{k} = \frac{1}{\sqrt{2}}$
 - Likelihood for multinomials $L(\Theta:D) = \prod_{k=1}^{K} \Theta_{k}^{N_{k}}$
- Binomial case: N₁ = # heads, N₂ = # tails ("frequency is ML estimator")
 CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure: K2 Algorithm and ALARM Algorithm Learn-BBN-Structure-K2 (D, Max-Parents) FOR $i \leftarrow 1$ to n DO // arbitrary ordering of variables $\{x_1, x_{2^1}, ..., x_n\}$ WHILE (Parents[x].Size < Max-Parents) DO // find best candidate parent $\textit{Best} \leftarrow \textit{argmax}_{j \succ i} (\textit{P}(\textit{D} \mid x_j \in \textit{Parents}[x_i])$ // max Dirichlet score IF (Parents[x] + Best).Score > Parents[x].Score) THEN Parents[x] += Best RETURN ({Parents[x] | i ∈ {1, 2, ..., n}}) A Logical Alarm Reduction Mechanism [Beinlich et al, 1989] BBN model for patient monitoring in surgical anesthesia Vertices (37): findings (e.g., esophageal intubation), interm diates, observables K2: found BBN different in only 1 edge from gold standard (elicited from expert) 6 CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure:

State Space Search and Causal Discovery

- Learning Structure: Beyond Trees
 - Problem not as easy for more complex networks
 - Example: allow two parents (even singly-connected case, aka polytree)
 - Greedy algorithms no longer guaranteed to find optimal network
 - In fact, no efficient algorithm exists
- <u>Theorem</u>: finding network structure with maximal score, where *H* restricted to BBNs with at most k parents for each variable, is NP-hard for k > 1
- Heuristic (Score-Based) Search of Hypothesis Space H
- Define H: elements denote possible structures, adjacency relation denotes transformation (e.g., arc addition, deletion, reversal)
- Traverse this space looking for high-scoring structures
- Algorithms: greedy hill-climbing, best-first search, simulated annealing
- <u>Causal Discovery</u>: Inferring Existence, Direction of <u>Causal Relationships</u>
- Want: "No unexplained correlations; no accidental independencies" (cause $_{\wedge}$ CI)

Ы

- Can discover causality from observational data alone?
- What is *causality* anyway?

CIS 830: Advanced Topics in Artificial Intelligence

Hugin Demo • Hugin - Commercial product for BBN inference: http://www.hugin.com - First developed at University of Aalborg, Denmark • Applications • - Popular research tool for inference and learning • - Used for real-world decision support applications • • Safety and risk evaluation: http://www.hugin.com/serene/ • Diagnosis and control in unmanned subs: http://www.hugin.com/serene/ • Customer support automation: http://www.cs.auc.dk/research/DSS/SACSO/ • Capabilities - Lauritzen-Spiegelhalter algorithm for inference (clustering aka clique reduction) - Object Oriented Bayesian Networks (OOBNs): structured learning and inference - Influence diagrams for decision-theoretic inference (utility + probability)

In-Class Exercise:

- See: http://www.hugin.com/doc.html

CIS 830: Advanced Topics in Artificial Intelligence

In-Class Exercise: Hugin and CPT Elicitation • Hugin Tutorials Introduction: causal reasoning for diagnosis in decision support (toy problem) http://www.hugin.com/hugintro/bbn_pane.html • Example domain: explaining low yield (drought versus disease) - Tutorial 1: constructing a simple BBN in Hugin http://www.hugin.com/hugintro/bbn_tu_pane.html Eliciting CPTs (or collecting from data) and entering them - Tutorial 2: constructing a simple influence diagram (decision network) in Hugin http://www.hugin.com/hugintro/id_tu_pane.html · Eliciting utilities (or collecting from data) and entering them MSBN Other Important BBN Resources Microsoft Bayesian Networks: http://www.research.microsoft.com/dtas/msb XML BN (Interchange Format): http://www.research.microsoft.com/dtas/bnfor BBN Repository (more data sets)

ww-nt.cs.berkeley.edu/home/nir/public html/Repository/index.htm

Ы

15

5

Learning Structure: <u>Conclusio</u>ns

Key Issues

http://

- Finding a criterion for inclusion or exclusion of an edge in the BBN
- Each edge

CIS 830: Advanced Topics in Artificial Intelligence

- "Slice" (axis) of a CPT or a commitment to acquire one
- Positive statement of conditional dependency
- Other Techniques
 - Focus today: constructive (score-based) view of BBN structure learning
 - Other score-based algorithms
 - · Heuristic search over space of addition, deletion, reversal operations
 - Other criteria (information theoretic, coding theoretic)
 - Constraint-based algorithms: incorporating knowledge into causal discovery
 Augmented Techniques
- Augmented Techniques
 - <u>Model averaging</u>: optimal Bayesian inference (integrate over <u>structures</u>)
 - <u>Hybrid BBN/DT models</u>: use a decision tree to record *P*(*x* | *Parents*(*x*))
- Other Structures: e.g., Belief Propagation with Cycles

CIS 830: Advanced Topics in Artificial Intelligence

Continuing Research and Discussion Issues Advanced Topics (Suggested Projects) Continuous variables and hybrid (discrete/continuous) BBNs Induction of hidden variables Local structure: localized constraints and assumptions, e.g., Noisy-OR BBNs Online learning and incrementality (aka lifelong, situated, in vivo learning): ability to change network structure during inferential process Hybrid quantitative and qualitative inference ("simulation") Other Topics (Beyond Scope of CIS 830 / 864) Structural EM Polytree structure learning (tree decomposition): alternatives to Chow-Liu MWST Complexity of learning, inference in restricted classes of BBNs BBN structure learning tools: combining elicitation and learning from data Turn to A Partner Exercise How might the Lumière methodology be incorporated into a web search agent - Discuss briefly (3 minutes) S CIS 830: Advanced Topics in Artificial Intelligence

Terminology

- Bayesian Networks: Quick Review on Learning, Inference
 - Structure learning: determining the best topology for a graphical model from data
 - Constraint-based methods
 - · Score-based methods: statistical or information-theoretic degree of match
 - Both can be global or local, exact or approximate
 - Elicitation of subjective probabilities
- Causal Modeling
- <u>Causality</u>: "direction" from cause to effect among events (observable or not)
 Causal discovery: learning causality from observations
- Incomplete Data: Learning and Inference
 - <u>Missing values</u>: to be filled in given partial observations
 - Expectation-Maximization (EM): <u>iterative refinement</u> clustering algorithm
 - Estimation step: use current parameters ⊖ to estimate missing {N}
 - <u>Maximization</u> (re-estimation) step: update Θ to maximize $P(N_{\mu} E_{j} | D)$

CIS 830: Advanced Topics in Artificial Intelligence

Summary Points

- Bayesian Networks: Quick Review on Learning, Inference
- Learning, eliciting, applying CPTs
- In-class exercise: Hugin demo; CPT elicitation, application
- Learning BBN structure: constraint-based versus score-based approaches
- K2, other scores and search algorithms
- Causal Modeling and Discovery: Learning Causality from Observations
- Incomplete Data: Learning and Inference (Expectation-Maximization)
- Tutorials on Bayesian Networks
 - Breese and Koller (AAAI '97, BBN intro): <u>http://robotics.Stanford.EDU/-koller</u>
 Friedman and Goldszmidt (AAAI '98, Learning BBNs from Data):
 - http://robotics.Stanford.EDU/people/nir/tutorial/ – Heckerman (various UAI/JCAI/ICML 1996-1999, Learning BBNs from Data):
 - http://www.research.microsoft.com/~heckerman
- Next Class: BBNs and Causality
- Later: UAI Concluded; KDD, Web Mining; GAs, Optimization
- CIS 830: Advanced Topics in Artificial Intelligence

(S