

Bayesian Networks:

 Quick Review- Recall: Conditional Independence (CI) Assumptions

Bayesian Network: Digraph Model

- Vertices (nodes): denote events (each a random variable)

Edges (arcs, links): denote conditional dependencies
Chain Rule for (Exact) Inference in BBNs $P\left(X_{i}, X_{2}, \ldots, X_{n}\right)=\prod^{n} \boldsymbol{P}\left(\boldsymbol{X}_{i} /\right.$ parents $\left.\left(X_{i}\right)\right)$ Arbitrary Bayesian networks: $\mathfrak{N}(p-$ complete
Polytrees: linear time

- Example ("Sprinkler" BBN)
 - MAP, ML Estimation over BBNs $\quad h_{m L}=\arg \max _{h=H} P(D / h)$ CIS 830: Advanced Topics in Artificial Intelligence
- Chapter 15, Mitchell
- References: Pearl and Verma; tutorials (Heckerman, Friedman and Goldszmidt)

More Bayesian Belief Networks (BBNs)

- Inference: applying CPTs
- Learning: CPTs from data, elicitation
- In-class demo: Hugin (CPT elicitation, application)

Learning BBN Structure

- K2 algorithm
- Other probabilistic scores and search algorithms

Causal Discovery: Learning Causality from Observations
Next Class: Last BBN Presentation (Yue Jiao: Causality)
After Spring Break

- KDD
- Genetic Algorithms (GAs) / Programming (GP)

CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure

- Problem Definition
- Given: data D (tuples or vectors containing observed values of variables)
- Return: directed graph (V, E) expressing target CPTs (or commitment to acquire)

Benefits

- Efficient learning: more accurate models with less data - $P(A), P(B)$ vs. $P(A, B)$
- Discover structural properties of the domain (causal relationships)

Acccurate Structure Learning: Issues

- Superfluous arcs: more parameters to fit; wrong assumptions about causality
- Missing arcs: cannot compensate using CPT learning; ignorance about causality

Solution Approaches

- Constraint-based: enforce consistency of network with observations

Score-based: optimize degree of match between network and observations
Overview: Tutorials

- [Friedman and Goldszmidt, 1998] http://robotics.Stanford.EDU/people/nir/tutorial/
- [Heckerman, 1999] http://www.research.microsoft.com/~heckerman

CIS 830: Advanced Topics in Artificial Intelligence

Learning Distributions in BBNs:

 Quick Review- Learning Distributions
- Shortcomings of Naïve Bayes
- Making judicious Cl assumptions
- Scaling up to BBNs: need to learn a CPT for all parent sets
- Goal: generalization
- Given D (e.g., $\{1011,1001,0100\}$)
- Would like to know $P($ schema $)$: e.g., $P\left(11^{\star *}\right) \equiv P\left(x_{1}=1, x_{2}=1\right)$
Variants
- Known or unknown structure
- Training examples may have missing values
Gradient Learning Algorithm
- Weight update rule

$$
w_{i j k} \leftarrow w_{i j k}+r \sum_{x \in D} \frac{P_{h}\left(y_{i j}, u_{i k} / x\right)}{w_{i j k}}
$$

- Learns CPTs given data points D
CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure:
Constraints Versus Scores

- Constraint-Based
- Perform tests of conditional independence
- Search for network consistent with observed dependencies (or lack thereof)
- Intuitive; closely follows definition of BBNs
- Separates construction from form of Cl tests
- Sensitive to errors in individual tests
- Score-Based
- Define scoring function (aka score) that evaluates how well (in)dependencies in a structure match observations
- Search for structure that maximizes score
- Statistically and information theoretically motivated
- Can make compromises
- Common Properties
- Soundness: with sufficient data and computation, both learn correct structure
- Both learn structure from observations and can incorporate knowledge

CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure: Maximum Weight Spanning Tree (Chow-Liu)			
- Algorithm Learn-Tree-Structure-I (D) - Estimate $P(x)$ and $P(x, y)$ for all single RVs, pairs; $\mathrm{I}(X ; \eta=\mathrm{D}(P(X, \eta) \\| P(X) \cdot P(\eta)$ - Build complete undirected graph: variables as vertices, $1(X ; \eta)$ as edge weights - $T \leftarrow$ Build-MWST ($V \times V$, Weights) $\quad / /$ Chow-Liu algorithm: weight function $\equiv 1$ - Set directional flow on T and place the CPTs on its edges (gradient learning) - RETURN: tree-structured BBN with CPT values - Algorithm Build-MWST-Kruskal ($E \subseteq V \times V$, Weights: $E \rightarrow \mathrm{R}^{+}$)			
	e Department of Computing and Information Sci		

Scores for Learning Structure: Prior over Parameters

- Likelihood $L(\Theta: D)$
- Definition: $L(\Theta: D) \equiv P(D \mid \Theta)=\Pi_{x \in D} P(x \mid \Theta)$
- General BBN (i.i.d data x): $L(\Theta: D) \equiv \prod_{x \in D} \prod_{i} P\left(x_{i} \mid \operatorname{Parents}\left(x_{i}\right) \sim \Theta\right)=\Pi_{i} L\left(\Theta_{i}: D\right)$

$$
\text { - NB: } \Theta \text { specifies CPTs for Parents }\left(x_{i}\right)
$$

- Likelihood decomposes according to the structure of the BBN

Estimating Prior over Parameters: $P(\Theta \mid D) \propto P(D) \cdot P(D / \Theta) \equiv P(D) \cdot L(\Theta: D)$

- Example: Sprinkler
- Scenarios $D=\{(\operatorname{Season}(i)$, Sprinkler(i), Rain(i), Moisture((i), Slipperiness(i)) $\}$
- P(Su, Off, Dr, Wet, $N S$) $=P(S) \cdot P(O \mid S) \cdot P(D \mid S) \cdot P(W \mid O, D) \cdot P(N \mid W)$
- MLE for multinomial distribution (e.g., $\left\{\right.$ Spring, Summer, Fall, Winter \}): $\hat{\boldsymbol{O}}_{k}=\frac{N_{k}}{\sum_{1}^{K} N_{l}}$
- Likelihood for multinomials $L(\boldsymbol{O}: D)=\prod_{k}^{K} \boldsymbol{O}_{k}^{N_{k}}$
- Likelihood for multinomials $L(\boldsymbol{O}: D)=\prod_{k=1}^{K} \theta_{k}{ }^{N_{k}}$

Binomial case: $N_{1}=$ \# heads, $N_{2}=$ \# tails ("frequency is ML estimator")
CIS 830: Advanced Topics in Artificial Intelligence

Scores for Learning Structure:

The Role of Inference

- General-Case BBN Structure Learning: Use Inference to Compute Scores
- Recall: Bayesian Inference aka Bayesian Reasoning
- Assumption: $\boldsymbol{h} \in \boldsymbol{H}$ are mutually exclusive and exhaustive
- Optimal strategy: combine predictions of hypotheses in proportion to likelihood
- Compute conditional probability of hypothesis h given observed data D
- i.e., compute expectation over unknown h for unseen cases
- Let $h \equiv$ structure, parameters $\Theta \equiv$ CPTs

$$
P\left(\vec{x}^{(m+1)} \mid D\right)=P\left(x_{1}, x_{2}, \ldots, x_{n} \mid \bar{x}^{(1)}, \vec{x}^{(2)}, \ldots, \bar{x}^{(m)}\right)
$$

$$
=\sum_{h \in H} P\left(\dot{x}^{(m+1)} \mid D, h\right) \cdot P(h / D)
$$

In-Class Exercise: Hugin Demo
- Hugin - Commercial product for BBN inference: http://www.hugin.com - First developed at University of Aalborg, Denmark - Applications - Popular research tool for inference and learning - Used for real-world decision support applications - Safety and risk evaluation: http://www.hugin.com/serene/ - Diagnosis and control in unmanned subs: http://advocate.e-motive.com - Customer support automation: http://www.cs.auc.dk/research/DSS/SACSO/ - Capabilities - Lauritzen-Spiegelhalter algorithm for inference (clustering aka clique reduction) - Object Oriented Bayesian Networks (OOBNs): structured learning and inference - Influence diagrams for decision-theoretic inference (utility + probability) - See: http://www.hugin.com/doc.html
CIS 830: Advanced Topics in Artificial Intelligence \quad Department of Computing and

(Furen

Hugin Demo

State Space Search and Causal Discovery

- Learning Structure: Beyond Trees
- Problem not as easy for more complex networks
- Example: allow two parents (even singly-connected case, aka polytree)
- Greedy algorithms no longer guaranteed to find optimal network
- In fact, no efficient algorithm exists
- Theorem: finding network structure with maximal score, where H restricted to BBNs with at most k parents for each variable, is NP-hard for $k>1$
Heuristic (Score-Based) Search of Hypothesis Space H
- Define H : elements denote possible structures, adjacency relation denotes transformation (e.g., arc addition, deletion, reversal)
- Traverse this space looking for high-scoring structures

Algorithms: greedy hill-climbing, best-first search, simulated annealing
Causal Discovery: Inferring Existence, Direction of Causal Relationships - Want: "No unexplained correlations; no accidental independencies" (cause \wedge CI)

- Can discover causality from observational data alone?

What is causality anyway?
CIS 830: Advanced Topics in Artificial Intelligence

- Commercial product for BBN inference: http://www.hugin.com - First developed at University of Aalborg, Denmark

Applications

- Popular research tool for inference and learning
- Safety and risk evaluation: http://www.hugin.com/serene/
- Diagnosis and control in unmanned subs: http://advocate.e-motive.com

Customer support automation: http://www.cs.auc.dk/research/DSS/SACSO

- Lauritzen-Spiegelhalter algorithm for inference (clustering aka clique reduction)
- Object Oriented Bayesian Networks (OOBNs): structured learning and inference
- Influence diagrams for decision-theoretic inference (utility + probability)

CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure: Conclusions

- Key Issues
- Finding a criterion for inclusion or exclusion of an edge in the BBN
- Each edge
- "Slice" (axis) of a CPT or a commitment to acquire one
- Positive statement of conditional dependency

Other Techniques

- Focus today: constructive (score-based) view of BBN structure learning
- Other score-based algorithms
- Heuristic search over space of addition, deletion, reversal operations
- Other criteria (information theoretic, coding theoretic)
- Constraint-based algorithms: incorporating knowledge into causal discovery

Augmented Techniques

- Model averaging: optimal Bayesian inference (integrate over structures) Hybrid BBN/DT models: use a decision tree to record $P(x \mid \operatorname{Parents}(x))$ - Other Structures: e.g., Belief Propagation with Cycles CIS 830: Advanced Topics in Artificial Intelligence

Terminology

- Bayesian Networks: Quick Review on Learning, Inference
- Structure learning: determining the best topology for a graphical model from data
- Constraint-based methods
- Score-based methods: statistical or information-theoretic degree of match - Both can be global or local, exact or approximate
- Elicitation of subjective probabilities
- Causal Modeling
- Causality: "direction" from cause to effect among events (observable or not)
- Causal discovery: learning causality from observations
- Incomplete Data: Learning and Inference
- Missing values: to be filled in given partial observations
- Expectation-Maximization (EM): iterative refinement clustering algorithm
- Estimation step: use current parameters Θ to estimate missing $\left\{N_{i}\right\}$ - Maximization (re-estimation) step: update Θ to maximize $P\left(N_{p} E_{j} \mid D\right)$

S 830: Advanced Topics in Artificial Intelligence

- Bayesian Knowledge Discoverer (BKD)

- Research product for BBN structure learning: http://kmi.open.ac.uk/projects/bkd/
- Bayesian Knowledge Discovery Project [Ramoni and Sebastiani, 1997]
- Knowledge Media Institute (KMI), Open University, United Kingdom
- Closed source, beta freely available for educational use
- Handles missing data
- Uses Branch and Collapse: Dirichlet score-based BOC approximation algorithm http://kmi.open.ac.uk/techreports/papers/kmi-tr-41.ps.gz
Sister Product: Robust Bayesian Classifier (RoC)
- Research product for BBN-based classification with missing data http://kmi.open.ac.uk/projects/bkd/pages/roc.html
- Uses Robust Bayesian Estimator, a deterministic approximation algorithm http://kmi.open.ac.uk/techreports/papers/kmi-tr-79.ps.gz
CIS 830: Advanced Topics in Artificial Intelligence

Continuing Research and Discussion Issues

- Advanced Topics (Suggested Projects)
- Continuous variables and hybrid (discrete/continuous) BBNs
- Induction of hidden variables
- Local structure: localized constraints and assumptions, e.g., Noisy-OR BBNs
- Online learning and incrementality (aka lifelong, situated, in vivo learning): ability to change network structure during inferential process
- Hybrid quantitative and qualitative inference ("simulation")

Other Topics (Beyond Scope of CIS 830 / 864)

- Structural EM
- Polytree structure learning (tree decomposition): alternatives to Chow-Liu MWST
- Complexity of learning, inference in restricted classes of BBNs
- BBN structure learning tools: combining elicitation and learning from data
- Turn to A Partner Exercise
- How might the Lumière methodology be incorporated into a web search agent?
- Discuss briefly (3 minutes)

Summary Points

- Bayesian Networks: Quick Review on Learning, Inference
- Learning, eliciting, applying CPTs
- In-class exercise: Hugin demo; CPT elicitation, application
- Learning BBN structure: constraint-based versus score-based approaches
- K2, other scores and search algorithms

Causal Modeling and Discovery: Learning Causality from Observations

- Incomplete Data: Learning and Inference (Expectation-Maximization)
- Tutorials on Bayesian Networks
- Breese and Koller (AAAI ‘97, BBN intro): http://robotics.Stanford.EDU/~koller
- Friedman and Goldszmidt (AAAI '98, Learning BBNs from Data):
http://robotics.Stanford.EDU/people/nir/tutorial/
- Heckerman (various UAI/IJCAI/ICML 1996-1999, Learning BBNs from Data): http://www.research.microsoft.com/~heckerman
Next Class: BBNs and Causality
Later: UAI Concluded; KDD, Web Mining; GAs, Optimization
CIS 830: Advanced Topics in Artificial Intelligence

