

Lecture Outline	
- Readings - Chapter 15, Russell and Norvig - References - Chapters 14-17, Russell and Norvig - Chapter 6, Mitchell - Pearl and Verma paper - Tutorials (Heckerman, Friedman and Goldszmidt) Bayesian Belief $\underline{\text { Networks (BBNs) Concluded }}$ - Inference: applying CPTs - Learning: CPTs from data, elicitation - In-class demo: Hugin (CPT elicitation, application) - Causal Discovery and BBN Structure Learning - KDD and Machine Learning Resources - Next Class: First KDD Presentation	
CIS 830: Advanced Topics in Artificial Intelligence	

Bayesian Networks: Quick Review

- Recall: Conditional Independence (CI) Assumptions

Bayesian Network: Digraph Model

- Vertices (nodes): denote events (each a random variable)

Edges (arcs, links): denote conditional dependencies
Chain Rule for (Exact) Inference in BBNs $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} /\right.$ parents $\left.\left(X_{i}\right)\right)$

- Arbitrary Bayesian networks: $\mathcal{X}(\rho-c o m p l e t e$

Polytrees: linear time
Example ("Sprinkler" BBN)
 - MAP, ML Estimation over BBNs $\quad h_{m L}=\arg \max _{h \in H} P(D / h)$ CIS 830: Advanced Topics in Artificial Intelligence

Learning Structure:

State Space Search and Causal Discovery

- Learning Structure: Beyond Trees
- Problem not as easy for more complex networks
- Example: allow two parents (even singly-connected case, aka polytree)
- Greedy algorithms no longer guaranteed to find optimal network
- In fact, no efficient algorithm exists

Theorem: finding network structure with maximal score, where H restricted to BBNs with at most k parents for each variable, is NP-hard for $k>1$
Heuristic (Score-Based) Search of Hypothesis Space H

- Define H : elements denote possible structures, adjacency relation denotes transformation (e.g., arc addition, deletion, reversal)
- Traverse this space looking for high-scoring structures
- Algorithms: greedy hill-climbing, best-first search, simulated annealing

Causal Discovery: Inferring Existence, Direction of Causal Relationships

- Want: "No unexplained correlations; no accidental independencies" (cause $\wedge \mathrm{Cl}$)
- Can discover causality from observational data alone?
- What is causality anyway?

CIS 830: Advanced Topics in Artificial Intelligence

Hugin Demo

- Hugin
- Commercial product for BBN inference: http://www.hugin.com - First developed at University of Aalborg, Denmark

Applications

- Popular research tool for inference and learning
- Used for real-world decision support applications
- Safety and risk evaluation: http://www.hugin.com/serene/
- Diagnosis and control in unmanned subs: http://advocate.e-motive.com
- Customer support automation: http://www.cs.auc.dk/research/DSS/SACSO/

Capabilities

- Lauritzen-Spiegelhalter algorithm for inference (clustering aka clique reduction)
- Object Oriented Bayesian Networks (OOBNs): structured learning and inference
- Influence diagrams for decision-theoretic inference (utility + probability) - See: http://www.hugin.com/doc.html

CIS 830: Advanced Topics in Artificial Intelligence

Bayesian Knowledge Discoverer (BKD) Demo

- Bayesian Knowledge Discoverer (BKD)

- Research product for BBN structure learning: http://kmi.open.ac.uk/projects/bkd/
- Bayesian Knowledge Discovery Project [Ramoni and Sebastiani, 1997]
- Knowledge Media Institute (KMI), Open University, United Kingdom
- Closed source, beta freely available for educational use
- Handles missing data
- Uses Branch and Collapse: Dirichlet score-based BOC approximation algorithm http://kmi.open.ac.uk/techreports/papers/kmi-tr-41.ps.gz
- Sister Product: Robust Bayesian Classifier (RoC)
- Research product for BBN-based classification with missing data http://kmi.open.ac.uk/projects/bkd/pages/roc.htm - Uses Robust Bayesian Estimator, a deterministic approximation algorithm http://kmi.open.ac.uk/techreports/papers/kmi-tr-79.ps.gz
CIS 830: Advanced Topics in Artificial Intelligence

Using ANN, BBN, GA, and ML Tools for KDD

- Learning
- Bayesian belief networks (BBNs)
- R. Neal's DELVE, MCMC library (University of Toronto)
- Commercial tools: Hugin
- Experimental: BKD (closed-source), JavaBayes (open source)
- Mixture models and Gaussian processes: Neal (Toronto), MacKay (Oxford)
- Artificial neural network (ANN) tools
- Commercial (source available): NeuroSolutions 3
- Open source: Stuttgart Neural Network Simulator (SNNS)
- Genetic algorithms (GA) and genetic programming (GP) tools: Genesis, GPSYS

Inference

- BBNs: Ergo (MacOS), Hugin (Windows)
- ANNs: NeuroSolutions, SNNS, etc. (see ANN FAQ, NeuroNet web page)

Other KDD Resources

- KDNuggets (http://www.kdnuggets.com)
- D. Aha's ML page (NRL), Al page (CMU), S. Russell's AIMA page

CIS 830: Advanced Topics in Artificial Intelligence

ANN, BBN, and ML Tools: Questions and Answers

- In-Class Q\&A

- ?

Terminology

- Bayesian Networks: Quick Review on Learning, Inference
- Structure learning: determining the best topology for a graphical model from data
- Constraint-based methods
- Score-based methods: statistical or information-theoretic degree of match - Both can be global or local, exact or approximate

Elicitation of subjective probabilities

- Causal Modeling
- Causality: "direction" from cause to effect among events (observable or not)
- Causal discovery: learning causality from observations
- Incomplete Data: Learning and Inference
- Missing values: to be filled in given partial observations
- Expectation-Maximization (EM): iterative refinement clustering algorithm
- Estimation step: use current parameters Θ to estimate missing $\left\{N_{i}\right\}$ - Maximization (re-estimation) step: update Θ to maximize $P\left(N_{p} E_{j} \mid D\right)$

830: Advanced Topics in Artificial Intelligence

Summary Points

- Bayesian Networks: Quick Review on Learning, Inference
- Learning, eliciting, applying CPTs
- In-class exercise: Hugin demo; CPT elicitation, application
- Learning BBN structure: constraint-based versus score-based approaches
- K2, other scores and search algorithms

Causal Modeling and Discovery: Learning Causality from Observations

- Incomplete Data: Learning and Inference (Expectation-Maximization)
- Tutorials on Bayesian Networks
- Breese and Koller (AAAI ‘97, BBN intro): http://robotics.Stanford.EDU/~koller
- Friedman and Goldszmidt (AAAI '98, Learning BBNs from Data):
http://robotics.Stanford.EDU/people/nir/tutorial/
Heckerman (various UAI/IJCAI/ICML 1996-1999, Learning BBNs from Data): http://www.research.microsoft.com/~heckerman
Next Class: BBNs and Causality
Later: UAI Concluded; KDD, Web Mining; GAs, Optimization
CIS 830: Advanced Topics in Artificial Intelligence

