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Abstract

A method is presented that takes as an input a 2D microfacet ori-
entation distribution and produces a 4D bidirectional reflectance
distribution function (BRDF). This method differs from previous
microfacet-based BRDF models in that it uses a simple shadowing
term which allows it to handle very general microfacet distributions
while maintaining reciprocity and energy conservation. The gener-
ator is shown on a variety of material types.

CR Categories: I.3.7 [Computing Methodologies ]: Computer
Graphics—3D Graphics

Keywords: Reflectance & Shading Models, Rendering

1 Introduction

Physically-based rendering systems describe reflection behavior us-
ing thebidirectional reflectance distribution function(BRDF) [7].
At a given point on a surface the BRDF is a function of two direc-
tions, one toward the light and one toward the viewer. The char-
acteristics of the BRDF will determine what “type” of material the
viewer thinks the displayed object is composed of, so the choice of
BRDF model and its parameters is important. There are a variety of
basic strategies for modeling BRDFs that we categorize as follows.

Direct measurement. BRDFs can be measured directly us-
ing gonioreflectometerswhich mechanically vary the direction to a
small light source and a spectral sensor and thus collect a large num-
ber of point samples for the BRDF [7]. Simpler and less accurate
devices can also be constructed using CCD imaging devices [26].
More complex CCD devices can also be used which gather data
quickly with accuracy almost that of full gonioreflectometry [12].
If enough is known about the microstructure of a material, a BRDF
can be simulated by using avirtual gonioreflectometer, where sta-
tistical ray tracing followed by density estimation is used to create
BRDF data [3, 5, 27].

Empirical methods. There exist a variety of purely empirical re-
flection models, the most familiar being the models introduced by
Gouraud [6] and Phong [15]. These two initial models were meant
to be used with hand-chosen parameters, and thus these parame-
ters are intuitive. A variety of more complex methods have been
introduced to improve characteristics of the Phong model for effi-
ciency [19], to include anisotropy [26], and enforce physical con-
straints such as reciprocity [9]. Other models have been developed
to fit measurement data as opposed to being intuitive [10].

Figure 1: Images generated using the new BRDF model with un-
usual microfacet distributions. The BRDFs used to create these
images are both reciprocal and energy-conserving. The only illu-
mination is a small distant source, and the highlights will stay un-
changed if the spheres rotate about the axes through their north and
south poles.

Height correlation methods. In these methods a random rough
surface is a realization of some Gaussian random process. Such
a process can be described by its correlation function which is di-
rectly related to surface height correlations. This is the most com-
plete surface representation used in computer graphics. Some of the
most detailed descriptions of light scattering by a surface, including
wave optics effects, were obtained using this approach [8, 22].

Microfacet methods. Somewhere between the height correla-
tion methods and empirical methods lie models based on microfacet
theory [2, 4]. Microfacet models assume the surface consists of a
large number of small flat “micromirrors” (facets) each of which re-
flect light only in the specular direction. By computing the number
of visible microfacets at the appropriate orientation to specularly
reflect light from the source to the viewer, one can determine the
BRDF.

All of these methods have their place. In applications where
little is known about the low-level properties of the surface, mea-
surement is essential. Where physical optics effects are important,
height correlation methods should be used. Our interest is in visual
computer graphics applications which do not have obvious physi-
cal optics effects (e.g. metal with relatively large scratches, fabric).
The lesson from empirical models is that in many cases viewers are
not particularly sensitive to the fine details of light scattering as long
as the main character of the reflection is conveyed correctly. This
paper uses this aspect of human sensitivity to suggest a new micro-
facet model specifically intended to capture the main character of
reflection.

Microfacet models are able to capture the main character of re-
flection for surfaces whose appearance is dominated by surface
scattering. Although microfacet models lack the precision of height
correlation methods, they tend to be more intuitive with simpler ex-
pressions. However, to date there has been no microfacet model that
is reasonably general in its assumptions, maintains a simple formu-
lation, and conserves energy. In this paper we develop a model
with all of these characteristics by introducing assumptions about
surfaces that we believe are reasonable. These assumptions allow
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Figure 2: Geometry of reflection. Note thatk1, k2, andh share a
plane, which usually does not includen. On the left, the microfacet
can “see” in directionsk1 andk2 so it contributes to the BRDF.
On the right, directionk2 is blocked and the microfacet does not
contribute. Note that the microfacet distribution is not restricted to
height fields.

us to create a relatively simple formula for the probability that a
microfacet at a certain orientation is visible to the light/viewer. The
BRDF produced by this process is compact, reciprocal and energy-
conserving with only mild restrictions on the distribution of micro-
facet orientation (e.g., the very general distributions in Figure 1).

Our assumptions and guiding principles in relation to microfacet
theory are given in Section 2. Formalisms are developed in Sec-
tion 3. The key development of the paper, a simplified shadowing
term, is introduced in Section 4, and the resulting BRDF is derived.
Section 5 shows that this BRDF model conserves energy, and de-
rives a diffuse term to account for secondary and subsurface reflec-
tion. The model is applied to a variety of surfaces in Section 6. This
last section serves as a set of case-studies which both show how
the model can be applied, and that it is more general than previous
microfacet approaches. We believe the only other method which
is able to handle such a diverse set of surface microgeometries is
the “virtual gonireflectometer” approach involving explicit model-
ing of the surface structure and statistical averaging the results of
light scattering simulations.

2 Overview

The strategy behind our model is in balancing issues of practicality
and accuracy to produce a simple formulation that is still expres-
sive, reciprocal, and conserves energy. In this section we discuss
the basic ideas of microfacet models, as well as our strategy for us-
ing this theory to produce BRDFs. Important symbols used in the
paper are listed in Table 1.

Microfacet models assume that the surface consists of a large
number of small flat “micromirrors” (facets) each of which reflects
light only in the specular direction with respect to its own normalh
(Figure 2) and the overall appearance of the surface is governed by
two assumptions:

• the microfacet normals have an underlying probability density
functionp(h).

• a microfacet contributes to BRDF for a given pair of direc-
tions if and only if it is visible (not shadowed) relative to the
lighting directionk1 and the viewing directionk2.

The BRDF for a given direction pair(k1,k2) is determined entirely
by the Fresnel reflectance for that angle, the fraction of microfacets
with normal vectorh exactly betweenk1 andk2, and theshadow-
ing term: the fraction of those microfacets which are visible to both
eye and light (Figure 2). Microfacet theory’s only knowledge of the

(ab) scalar (dot) product of vectorsa andb
k1 normalized vector to light
k2 normalized vector to viewer
n surface normal to macroscopic surface
ρ(k1,k2) BRDF
h normalized half-vector betweenk1 andk2

p(h) probability density function of microfacet nor-
mals

F (cos θ) Fresnel reflectance for incident angleθ
P (k1,k2,h) Probability that light fromk1 reflecting in di-

rectionk2 is not shadowed
〈f〉 average of functionf over distributionp(h)

(see Equation 9)
Ω+(k) set of directionsh where(hk) > 0 (see Fig-

ure 4)
g(k) average of positive(hk) (see Equation 18)

Table 1: Important terms used in the paper

surface configuration isp(h), and this alone does not uniquely de-
termine the shadowing term. However, the shadowing term is still
heavily constrained by energy conservation.

The shadowing term is the most complex part of most
microfacet-based models, even if additionalp(h)-specific informa-
tion about the surface geometry is used. Because there are many
possible surface geometries that are consistent with a givenp(h),
it is the case that no specific shadowing function is “right”. We
believe that in most cases the shape ofp(h) function itself has a
much greater impact on the appearance than the shadowing. This
suggests the key idea in this paper: the shadowing term should be
made as simple as possible while remaining physically plausible.
Such a shadowing term is developed in Section 4. This key ex-
tension of the standard microfacet theories allows us to construct a
general procedure to create a BRDF for a statistical surface starting
from p(h).

Note that surface description in the language ofp(h) is less de-
tailed than that of using height correlation functions. Nevertheless,
we believe that the microfacet normal distribution is more intuitive
to deal with than the correlation functions. As we will emphasize in
Section 6, enough useful information aboutp(h) can be obtained
from general notion of surface structure obtained through visual
examination of the surface and the specular reflection highlight.
Moreover, attempting to obtain more detailed information about the
distribution might not be worth the effort. As in any other model,
we make simplification in our approach which affect the final re-
sult, but what we are trying to do is generate a physically plausible
BRDF having the general character of the surface reflection while
restricting the range of allowed surface microstructures as little as
possible. This is in contrast to most other physics-based approaches
which concentrate on a particular type of surface, usually Gaussian
height field, and emphasize the need for precise knowledge of sur-
face characteristics.

Some care should be exercised when specifyingp(h). In partic-
ular, because we do not make the common assumption of a surface
being a height field, in this general casep(h) should refer only to
the distribution of “visually important” or “surface” part of the mi-
crofacets. For example, a homogeneous porous substance thought
of as a collection of microfacets will have an overall “volume” dis-
tribution of microfacetspv(h) = const over the whole sphere of
directions. However, that most of these microfacets will be com-
pletely hidden and will not be of any significance for the scattering
process which occurs on the surface. In this case it is rather difficult
to separate surface from the rest of the substance and judge the exact
shape ofp(h). Fortunately, because we are not trying to reproduce
all the details of the reflection function, a reasonable guess forp(h)



is all we need and for this surface; it might bep(h) = const in
the upper hemisphere andp(h) = 0 in the lower one. Note, that
by making this particular choice forp(h) the surface is restricted to
be a height field. The initial choice can be refined later if necessary
but in this particular case it the surface will be mostly diffuse and
small refinements will not dramatically change the appearance.

We are concerned with single-bounce reflections from the micro-
facets and stay within the limits of geometric optics and Fresnel re-
flection. The result is a new form of the specular component of the
BRDF which constitutes the main contribution of the paper. The
complete BRDF can also have a diffuse term which accounts for
multiple bounces and subsurface scattering. This issue along with
other important properties of the BRDFs produced with the gener-
ator are briefly discussed in Section 5. Our framework is modular
and allows the user to choose the form of the final BRDF most ap-
propriate for the particular application.

3 Microfacet Theory

We now review the main results of microfacet theory as developed
by Torrance and Sparrow [23] and later introduced to computer
graphics by Cook and Torrance [4]. We follow their approach of
considering a collection of microfacets of small but finite size, and
we derive the basic formula for BRDF in terms of quantities conve-
nient for our model.

The quantity we wish to derive an expression for is the BRDF
ρ(k1,k2) which gives the ratio of radiance observed by a viewer in
the directionk2 to irradiance from infinitesimal solid angle about
k1. Throughout the paper, all vectors are shown inbold. They
are assumed to be normalized, and all quantities with subscript 1
refer to incident direction while those with subscript 2 belong to the
outgoing direction. Bothk1 andk2 and all normals point outward
from the surface. If we expose the surface to a uniform radiance of
L1 coming from a small solid angleδω1 aroundk1, the outgoing
radiance in directionk2 will be

L2 = ρ(k1,k2) L1 (k1n)δω1, (1)

wheren is the surface geometric normal and two vectors written
next to each other in parenthesis denotes their scalar product, i.e.,
the cosine of the angle between them. The use ofδ is not stan-
dard notation, but is used to make the algebra less cluttered without
losing the gist of the argument. By the definition of radiance, if
(k2n)A is the projected surface element area in the directionk2

andδE(k1 → k2) is the power reflected by the surface in the di-
rectionk2, then

L2 =
δE(k1 → k2)

A(k2n)δω2
, (2)

and BRDF can be written as

ρ(k1,k2) =
δE(k1 → k2)

AL1(k2n)(k1n)δω1δω2
. (3)

Only a fraction of all microfacets will participate in scattering the
energy fromk1 to k2. If the number of these active microfacets
is Nactive and all microfacets have the same areaAmf , their total
projected area in the direction ofk1 is NactiveAmf (kh) and the
total scattered power is

δE(k1 → k2) = L1δω1NactiveAmf (kh)F ((kh)), (4)

where h is the normalized half-vector betweenk1 and k2 and
F ((kh)) is Fresnel coefficient giving the fraction of incoming light
which is specularly reflected by a microfacet. Note that we will
drop subscripts in our notations if either of incoming and outgoing
direction can be used in an expression (e.g.,(kh)).

Out of the total ofN surface microfacets, onlyNp(h)δωh will
have their normals oriented in the appropriate direction. The den-
sity p(h) does not specify all surface properties uniquely, but in
our simplified approach this is the only characteristic of the surface
we will use in our analysis. Note that this function operates in the
domain of microfacet normals which is different from the space of
incoming and outgoing light directions. In particular, for the case
of specularly reflecting microfacets, the relationship between ele-
mentary solid angles [23] can be shown to be

δω2 = 4(k1h)δωh. (5)

Even if a microfacet has the required orientation, it might still not
contribute to the single-bounce highlight if it is shadowed by other
microfacets for either incoming or outgoing direction. Introducing
the probability for a microfacetnot to be shadowed in either incom-
ing or outgoing directions as0 ≤ P (k1,k2,h) ≤ 1 we will have
Nactive = Np(h)P (k1,k2,h)δωh and BRDF in the form

ρ(k1,k2) =
NAmfp(h)P (k1,k2,h)F ((kh))

4A(k1n)(k2n)
. (6)

Equation 6 is a somewhat modified version of the original result of
Torrance and Sparrow who present its more detailed derivation [23].

The areaA of the surface element can be written as a sum of the
projected areas of all microfacets:

A =
∑

facets

Amf (hn)P (n,h), (7)

where we introduce probabilityP (n,h) for a microfacet not to be
“shadowed” in the surface normal directionn by other microfacets.
If the surface is a height field,P (n,h) = 1 but in the general case
some microfacets may not contribute to the areaA of the projection.
This question is related to the general shadowing termP (k1,k2,h)
and we postpone its discussion until the next section. The “P ”
is used with a variable number of arguments that depend on what
assumptions are in play for that equation.

Given a large number of microfacets, Equation 7 can be rewritten
using the average over the ensemble of microfacets as

A = NAmf 〈(hn)P (n,h)〉ens, (8)

where〈...〉ens denotes the averaging procedure. One of the most
fundamental results in statistics states that as the size of the en-
semble increases, for a certain functionf of a random variable its
average over ensemble〈f〉ens converges with probability one to its
average〈f〉 over the distribution of the random variable. In our
case we can write for any quantityf(h):

〈f(h)〉ens = 〈f(h)〉 =

∫
Ω

f(h)p(h)dωh, (9)

where the integration is done over the unit sphereΩ of microfacet
normal directions (Gaussian sphere). So, for the BRDF we finally
have

ρ(k1,k2) =
p(h)P (k1,k2,h)F ((kh))

4(k1n)(k2n)〈(nh)P (n,h)〉 , (10)

and in the important special case of surface being a height field,

ρ(k1,k2) =
p(h)P (k1,k2,h)F ((kh))

4(k1n)(k2n)〈(nh)〉 . (11)

Although we have assumed that all microfacets have equal area
Amf the result does not change if there is an arbitrary distribution
of microfacet areas so long as this distribution is not correlated with
p(h), the distribution of normals.

Given a densityp(h), all terms in Equation 11 are straightfor-
ward to compute except for the shadowing termP (k1,k2,h). We
now turn to the discussion of this shadowing term which is neces-
sary to complete our formulation of the specular part of BRDF.



4 Shadowing Term

Most of the complexity of microfacet-based models arise from the
shadowing functionP (k1,k2,h). In this section we describe how
previous models deal with this term and introduce a new simplified
shadowing term.

4.1 Previous Shadowing Terms

On any rough surface it is likely that some microfacets will either
not receive light, or light reflected by them will be blocked by other
microfacets. The first situation is referred to by many authors as
shadowingand the second asmasking. However, these events are
symmetrical and for simplicity we will refer to both of them as
shadowing. A rigorous derivation of the probability that a point
on the surface is both visible and illuminated (also known as the
bistatic shadowing function) leads to very complicated expressions
and a set of approximations is made to make the problem tractable.
Several forms of the shadowing term have been derived in different
fields [1, 18, 21, 23, 25] and some of them (usually after further
simplification) were later introduced to computer graphics reflec-
tion models [4, 8, 22].

The most popular shadowing functions currently used are mod-
ifications of those of Smith [21], Sancer [18] and the original Tor-
rance and Sparrow shadowing term [23]. The first two formula-
tions are rather complex and are designed only for Gaussian height
fields. Smith, in addition, assumes an isotropic surface. The shad-
owing function by Torrance and Sparrow is simple, but assumes an
inconsistent model of an isotropic surface exclusively made by very
long V-cavities. None of the existing functions is flexible enough
to accommodate a sufficiently general distribution of microfacets.
Also, most of the formulations operate with height distributions,
not the more intuitive normal distributionp(h). In addition to space
limitations, this is the reason we do not present the expressions of
previously derived shadowing functions here.

The reason most authors deal with height distribution functions
is that shadowing is clearly a non-local event intimately related to
the height distribution of the surface and this information is neces-
sary for rigorous treatment of shadowing. In the next subsection we
will, however, make several assumptions which allows us to derive
a very general form of the shadowing termP (k1,k2,h) sufficient
for our purposes.

4.2 New Shadowing Term

As indicated by the preceding discussion, we cannot treat shadow-
ing rigorously if we assume a general form for the microfacet nor-
mal density function. Therefore, our generator is most appropriate
in cases where the effects of shadowing are secondary compared
with the influence of normal distribution shape. Even in these cases,
however, we cannot ignore the shadowing termP (k1,k2,h). As
can be seen from Equation 10, at the very least shadowing should
take care of the divergence at grazing angles where the denominator
terms disappear:(k1n)(k2n) → 0.

The shadowing term can be written as

P (k1,k2,h) = P (k1,h)P (k2,h |k1), (12)

whereP (k1,h) is the probability of not being shadowed in the di-
rectionk1 andP (k2,h |k1) is conditional probability of not being
shadowed in the directionk2 given that the facet is not shadowed in
directionk1. In general,P (k2,h |k1) 6= P (k2,h). For example,
it is easy to see that in the extreme case wherek1 = k2 we have
P (k2,h |k1) = 1. This shows that visibilities in the incoming
and outgoing directions are correlated. Most of shadowing func-
tions, however, are derived under the assumption of uncorrelated

visibilities. Van Ginneken et al. [24] considered how this correla-
tion affects Smith’s shadowing function, and found that its effect
can be accounted for by modifying the uncorrelated expression.

In most of this paper we will use the uncorrelated form of the
shadowing term written as a product of the two independent factors
for each of the two directions:

P (k1,k2,h) = P (k1,h)P (k2,h). (13)

This leads to some underestimation of the BRDF if directionsk1

andk2 are close to each other. If the viewing conditions are such
that this arrangement is of particular importance (in a night driving
simulator, for example) or if retroreflection is one of the pronounced
features of surface appearance (see Section 6.4) we propose using
a different form of the shadowing term:

P (k1,k2,h) = (1 − t(φ))P (k1,h)P (k2,h) +

t(φ)min(P (k1,h), P (k2,h)), (14)

where−π < φ < π is the angle between the projections of vectors
k1 andk2 onto the tangent plane andt(φ) is a correlation factor
with values between 0 and 1. The caset(φ) = 0 corresponds to
the completely uncorrelated case. This form of correlated shadow
term was chosen because it is simple and the resulting BRDF will
still conserve energy with arbitraryt(φ), as will be shown in Sec-
tion 5.3. We have not done extensive experimentation with the par-
ticular form oft(φ) but we do not believe it makes a large difference
as long ast(0) = 1 and t(φ) monotonically decreases to almost
zero as|φ| increases. The range of correlation effects was found
in [24] to be on the order of 15-25 degrees, so we use a Gaussian in
φ with the width of 15 degrees.

All we need now is an expression forP (k,h), the probability for
a microfacet to be visible in a given directionk. Note thatP (n,h)
in Equations 7, 8 and 10 of the previous section is just a special
case of this probability withk = n. The key assumption we make
is that probability for a microfacet to be visible in directionk does
not depend on the microfacet’s orientationh as long as it is not
turned away fromk (not self-shadowed), namely

P (k,h) =

{
P (k) if (kh) > 0
0 if (kh) ≤ 0

(15)

This assumption is equivalent to the absence of correlation between
the microfacet orientation and its position. This “distant shadower”
assumption has been invoked before to simplify complicated shad-
owing expressions obtained in other fields [1, 21, 25] but we will
use it in a different way - as a basis for deriving a simple and gen-
eral shadowing function. Intuitively, it corresponds to rather rough
surfaces and does not hold if the microfacets with certain orienta-
tion are more likely to be found at a certain height. For example, a
surface made of cylinders as shown in Figure 3a will not obey this
assumption while a very similar surface in Figure 3b might. In gen-
eral, the more correlated the surface microfacets are, the less likely
P (k,h) is to obey Equation 15.

The two surfaces in Figure 3 may still have the same distribu-
tion p(h) and there is no way for us to distinguish between the
two cases. Similarly, we will not be able to distinguish, for ex-
ample, between “positive” and “negative” cylinders of Poulin and
Fournier [16] but from their images it is clear that the differences
in appearance due to microfacet visibility issues and not to the dis-
tribution of microfacets are minor in this case. If finer details of
microfacet arrangement not captured byp(h) are expected to sub-
stantially affect the appearance, some different framework should
be used (see also Section 6.4).

The total projected area of a surface element onto directionk is
A(kn). It can also can be written in a way similar to Equation 7:

A(kn) =
∑

facets

Amf (hk)+P (k). (16)



Figure 3: Examples of surface microgeometry. Top: microfacets
with almost vertical orientation are more likely to be found near the
“bottom” of the surface and, therefore, are more likely to be shad-
owed. Bottom: orientation and height are largely uncorrelated.

Here the subscript ’+’ refers to the fact that the summation is per-
formed only over microfacets turned towardsk, namely the ones
with (hk) > 0. Introducing averaging over microfacets and, as
before, replacing it by averaging over distribution, we get

A(kn) = NAmfP (k)〈(hk)+〉. (17)

We are able to takeP (k) out of the averaging integral because of
our assumption that it does not depend onh. Because of the great
importance of quantity〈(hk)+〉 we introduce a new notation

g(k) = 〈(hk)+〉 =

∫
Ω+(k)

(hk)+p(h)dωh, (18)

where the integration is done inh-space over the hemisphere
Ω+(k) of directions(hk) > 0 (Figure 4). Note that if the surface
is a height field,P (n) = 1 and Equations 8 and 17 immediately
give a useful expression forP (k):

P (k) =
(kn)g(n)

g(k)
. (19)

In this special casep(h) = 0 in the lower hemisphere and the aver-
aging ing(n) is effectively done over the complete distribution.

To handle a more general case, we note that each microfacet
turned away from the directionk will have a shadow with area
Amf (hk). This area must be subtracted from the contribution of
microfacets turned towardsk. Again replacing sums by averages
over ensemble and then over distribution, we write the projected
area on the right-hand side of Equation 17 as

NAmfP (k)〈(hk)+〉 =

NAmf 〈(hk)+〉 + NAmf 〈(hk)−〉, (20)

or

P (k) = 1 +
〈(hk)−〉

g(k)
. (21)

The second term is negative and the integration in it is done over the
partΩ−(k) of distribution complimentary toΩ+(k) (Figure 4). It
is clear from this equation thatP (k) ≤ 1 as it should be. For a dis-
tribution of microfacet normalsp(h) to represent a valid surface, at
the very least the average normal vector over the entire distribution
must lie in the direction of the geometric normaln of the surface:

∫
Ω+(k)

hp(h)dωh +

∫
Ω−(k)

hp(h)dωh =

∫
Ω

hp(h)dωh = n(〈h〉n) (22)

n
k

Ω+( k)

Figure 4: Integration domain forg(k)

Multiplying both sides of this equation by scalark we have

〈(hk)+〉 + 〈(hk)−〉 = (kn)〈(hn)〉, (23)

or

〈(hk)−〉 = (kn)〈(hn)〉 − g(k). (24)

Substituting this into Equation 21 we obtain an expression for
P (k):

P (k) =
(kn)〈(hn)〉

g(k)
. (25)

Averaging in the numerator is done over the complete sphereΩ of
directions. Note that Equation 19 is now just a special case of Equa-
tion 25 and that Equations 21 and 25 show that for any physically
valid distributionp(h) our probability of being visible will indeed
lie between 0 and 1.

The combination of Equations 10, 13 (or 14) and 25 completely
describes the specular part of BRDF. Using the uncorrelated form
of shadowing term of Equation 13, we get

ρ(k1,k2) =
p(h)〈(hn)〉F ((kh))

4g(k1)g(k2)
. (26)

Note the interesting fact that p.d.f.p(h) does not even have to be
normalized to be used in this equation. The above formula is well-
suited to evaluation. Givenp(h), it is straightforward to evaluate
the BRDF. Equation 26 is the main contribution of this paper. For
the rest of the paper we will discuss implications and applications
of this formula.

5 Extensions and Discussion

In this section we discuss several issues related to the specular-only
single bounce BRDF model derived in the last section. In particu-
lar, we discuss an energy-conserving diffuse term, implementation
issues, extension to non-Fresnel microfacets, and prove energy con-
servation.

5.1 Diffuse Term

Equation 26 describes the part of scattering process due to single-
bounce reflections from microfacets. In addition to this specular
part there will be other scattering events, such as multiple bounces
and subsurface scattering. A complete description of these pro-
cesses is rarely attempted in a general-purpose BRDF model and



their combined contribution is usually represented by adding a dif-
fuse component to the specular BRDF. The most common form of
the diffuse term is Lambertian:

ρ(k1,k2) =
kdρd

π
+ ksρs(k1,k2), (27)

where0 ≤ ρd ≤ 1 is diffuse albedo of the surface whilekd andks

are user-specified constants controlling the relative importance of
specular and diffuse reflections. This is a perfectly valid option in
our case as well. We can simply use Equation 26 forρs and ensure
thatkd + ks ≤ 1 to preserve the energy conservation achieved for
the specular part (Section 5.3).

However, this simple form of diffuse term has problems. First of
all, it is not obvious how to choose weightskd andks. Second, it
is clear that as more light is being reflected specularly, less of it is
available for diffuse scattering, so the relative weightskd andks of
diffuse and specular reflections should not be constants. If Fresnel
effects can causeks to approach one for grazing angles,kd must be
set to zero for all angles (since it is a constant). To take this effect
into account in a way preserving reciprocity, we use a method of
Shirley et al. [20] and write forkd

kd(k1,k2) = c(1 − R(k1))(1 − R(k2)), (28)

where

R(k) =

∫
ρs(k,k′)(k′n)dωk′ (29)

is the directional hemispherical reflectance of the specular term,
wherek′ is the mirrored direction ofk. We also completely dis-
pose ofks by allowing the specular reflection to “have its way” and
adjust the diffuse term so that it consistently follows the specular
reflection. The normalization constantc is computed such that for
ρd = 1 the total incident and reflected energies are the same. A
complete BRDF will have the form

ρ(k1,k2) = c(1 − R(k1))(1 − R(k2))ρd + ρs(k1,k2). (30)

This form of diffuse term implicitly assumes that there is no absorp-
tion on the surface and all the energy which is not reflected specu-
larly is available for diffuse scattering. The situation is different in
case of metals. First, iff0 is the normal reflectance of the metal,
only approximatelyf0 fraction of incoming light is not absorbed by
a flat metal surface. Second, diffuse scattering here is exclusively
due to multiple bounces and thus the diffusely scattered light has a
more saturated color of the metal than the primary reflection does.
We attempt to take both of these effects into account by replacing
ones in Equation 30 byf0 and assigningρd for a metal (which oth-
erwise does not have any physical sense) to bef0. Because the true
fraction of non-absorbed light is greater thanf0, factor(f0−R(k))
can become negative for some surfaces due to our approximation.
We simply set the diffuse term to zero in such cases.

5.2 Implementation Issues

Implementation of our model in a rendering system is straightfor-
ward. For the Fresnel coefficient we use Schlick’s approximate for-
mula [19]

F ((kn)) = f0 + (1 − f0)(1 − (kn))5 (31)

where againf0 is the Fresnel factor at normal incidence. Note that
we could also use the full Fresnel equations, but we use Schlick’s
formula only for convenience. This should not lead to significant
accuracy problems as for the error introduced by Schlick’s formula
is smaller than one percent compared with the full Fresnel expres-
sion [19]. To generate a BRDF for a new distributionp(h) all we

need, in addition to the implementation ofp(h) itself, are values
for g(k) andR(k). Unfortunately, because of the non-standard in-
tegration domain ofg(k), analytical expressions for this function
can be obtained only for the most trivialp(h)’s and we need to
resort to numerical integration.

However, the integrals are well-behaved and the results are
smooth functions for non-singularp(h). This allows us to compute
values of bothg(k) andR(k) on a very coarse grid using available
numerical packages, store the results in a table and use bilinear in-
terpolation during the rendering process. We have used a total of
200 grid points (for many distributions an even coarser grid should
be sufficient). Integration was done using both Matlab and a simple
home-built Monte Carlo routine. Two sets of computedR(k) (one
with f0 = 1 and one withf0 = 0) are sufficient to computeR(k)
for a material with arbitraryf0 for a given microfacet distribution.

In the BRDF generation phase we start fromp(h) and output a
compact numerical representation of three two-dimensional func-
tions: g(k), R(k) with f0 = 0 andR(k) with f0 = 1. The last
two functions are only used for the diffuse term and are not required
for its simpler form in Equation 27. During rendering we use these
data to compute the full four dimensional BRDF for arbitraryk1

andk2. At this stage we also use data for normal reflectancef0

and diffuse albedoρd. Wavelength dependence of these quantities
controls the color of the surface. We have not done a careful perfor-
mance analysis but from our experience for a non-trivialp(h) most
of the BRDF computation time is due to evaluating this normal dis-
tribution function.

Note that most distributions have some symmetry which can be
exploited to further reduce the amount of data and/or generation
time. Data for an anisotropic Gaussian distribution of normals, for
example, need be computed only over a quarter of the hemisphere
and for any isotropic distribution functionsg(k) andR(k) become
one dimensional.

Finally, if a particular type of parameterized distribution (Gaus-
sian, for example) is used often it should be possible to approximate
g(k) with a simple function ofk and distribution parameters as is
commonly done to increase the efficiency of reflection models. The
same is true forR(k) but these functions usually have more com-
plex shapes.

5.3 Energy Conservation

By inspection of the formulas, it is clear that generated BRDFs are
reciprocal. We now prove now that they also conserve energy for
any physically plausiblep(h). To do this, we assume the worst-
case scenario ofF ((kh)) = 1 and shadowing term in Equation 14
with t(φ) = 1 (becauseP (k) ≤ 1 this corresponds to the largest
possible shadowing term for our model). The BRDF in this case
will be

ρ(k1,k2) =
p(h)min(P (k1), P (k2))

4〈(hn)〉(k1n)(k2n)
≤

p(h)P (k1)

4〈(hn)〉(k1n)(k2n)

Hemispherical reflectance for a given incoming direction is

R(k1) =

∫
ρs(k1,k2)(k2n)dω2 ≤

P (k1)

4〈(hn)〉(k1n)

∫
p(h)dω2 =

P (k1)

4〈(hn)〉(k1n)

∫
p(h)4(k1h)dωh

The last transition is done using Equation 5. The integration is done
over a complex region ofh-space which is in any case contained



in the hemisphereΩ+(k1). Extending the integral over the whole
Ω+(k1) and using definitions 18 ofg(k) and 25 ofP (k) we com-
plete the proof:

R(k1) ≤ P (k1)

〈(hn)〉(k1n)

∫
Ω+(k1)

(k1h)p(h)dωh =

P (k1)g(k1)

〈(hn)〉(k1n)
= 1 (32)

The only fact we used in our proof is thatP (k) ≤ 1 for anyk. In
Section 4, in turn, this was shown to be the case for anyp(h) whose
average normal vector〈h〉 is parallel to the geometric normal of the
surface. This is the only restriction on microfacet distributionp(h).
If it is satisfied, the generated BRDF will conserve energy.

5.4 Non-Fresnel Microfacets

Our model is not restricted to perfectly specular microfacets. In
general, microfacets with many orientations will contribute to sur-
face BRDF for given incoming and outgoing directions and integra-
tion of their contribution is necessary.

Let all microfacets have elementary BRDFβ. Then we can re-
peat with some modifications the derivation from Sections 3 and 4
to arrive at the result

ρ(k1,k2) =
P (k1,k2)

(k1n)(k2n)〈(nh)〉∫
β(k1,k2)(k1h)+(k2h)+p(h)dωh (33)

The integration is done over the sector where both(k1h) and(k2h)
are positive and any of shadowing termsP (k1,k2) from Section 4
can be used. Note thatβ(k1,k2) is usually specified with respect to
microfacet’s local coordinate system and a coordinate transforma-
tion is necessary to obtain its value for the integral in Equation 33.

Although this extension considerably broadens the range of sur-
faces our model is applicable to, we also lose one of the main ad-
vantages of our approach: compactness. Before, we could represent
a general four dimensional BRDF using only two dimensional func-
tions. The integral in Equation 33, however, is a four dimensional
function by itself and does not, in general, allow lower dimensional
representation. For some special cases, such as Lambertian elemen-
tary BRDF coupled with isotropicp(h) the integral becomes three
dimensional and, therefore, feasible to compute, store and use in a
way similar to that described in Section 5.2. For an isotropic Gaus-
sian distribution of Lambertian microfacets the general behavior of
the generated BRDF is similar to that of Oren-Nayar’s model [14],
namely, retroreflection is increased compared to a Lambertian sur-
face (Figure 8).

6 Applications

In this section we apply our model to a variety of surface types. Al-
though we have implemented our model in a Monte Carlo ray tracer
capable of handling complex geometries and illumination effects,
our images in this section intentionally show very simple objects
and lighting conditions. In particular, illumination is coming from
a single small light source far from the scene and indirect lighting is
not included. This is done to emphasize effects due to BRDF of the
material and to make the comparison with previous results easier.

Reflectance data of gold are used asf0 (see Section 5.2) for all
metal objects while for non-metalsf0 is set to5% across the visible
spectrum.

Figure 5: Anisotropic Gaussian golden spheres withσx = 0.1,
σy = 1.0. Left: Ward. Right: new model.
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Figure 6: Directional hemispherical reflectance as a function of
incoming angle for perfectly reflecting microfacets with Gaussian
distribution σx = 0.1, σy = 0.2. For an ideal flat surfaceR
should be 1.0 everywhere. Left: Ward. Right: new model.

Figure 7: Anisotropic Gaussian golden painted plastic spheres
with σx = 0.1, σy = 0.2. Left: Ward. Right: new model.

Figure 8: Gaussian spheres with Lambertian microfacets. Right:
new model withσx = σy = 1.0. Left: Oren-Nayar with compatible
parameters.



6.1 Gaussian Surfaces

By far the most popular distribution used in BRDF research liter-
ature is Gaussian. This is due to both its practical importance and
nice mathematical properties. Gaussians are used in all four ma-
jor categories of BRDF models outlined in the introduction. While
some of this work is closer to our approach in its theoretical foun-
dations, we feel that from the practical point of view our model
is closest to that of Ward [26]. Ward’s BRDF is simple, handles
anisotropic distributions and seeks to reproduce the main character
of the material’s reflectance behavior without attempting an overly
detailed description. Other previous models do not simultaneously
possess all these properties.

To create an anisotropic Gaussian BRDF, we use the distribution

p(h) = c ∗ exp(− tan2 θ(cos2 φ/σ2
x + sin2 φ/σ2

y)) (34)

whereθ is the angle between the half vectorh and the surface nor-
mal,φ is the azimuth angle ofh andc is a normalization constant.

Two side-by-side comparisons of our model with Ward’s are
shown in Figures 5 and 7. Note that the shape of highlight is
nearly identical while there are some differences in the diffuse part
of images which is due to Ward effectively using a simpler form
(Equation 27) of the diffuse component. In particular, for our metal
sphere on Figure 5 the diffuse component appears automatically
when there is enough energy left after single-bounce scattering. To
achieve the same effect in Ward’s model (and any other using the
popular Lambertian diffuse term) it would be necessary to manually
adjust the diffuse reflectance parameter.

This figure also shows that the highlight is brighter for our
BRDF. The general reason for this is clear from Figure 6 where
the hemispherical reflectanceR is plotted versus the incoming light
direction. To make the plots directly comparable, we show data for
most reflecting specular BRDF in both cases (f0 = 1 for our model
andρs = 1 in Equation 5 of Ward’s paper [26]) and do not include
the diffuse term. For the values of parameters shown, the surface is
quite close to being flat, so one would expect thatR should be close
to that of flat surface, 1.0 in this case. One can see from the plots
that our model behaves as expected while Ward’s does not. Note
also that the true value forR at the grazing angle((kn) = 0) is
infinite for Ward’s model [13] and we simply extrapolate previous
behavior to get the data point at the grazing angle.

While our approach does require an extra generation step, com-
putation time during the rendering process of our BRDF is close to
that of Ward’s and our model is a viable alternative where energy
conservation is of great importance for a particular application.

Figure 8 compares a BRDF generated for an isotropic Gaussian
distribution of Lambertian microfacets with an extension of our
process (Section 5.4) and Oren-Nayar model with compatible pa-
rameters. Both BRDFs have the tendency to make objects appear
“flatter” than the Lambertian BRDF due to increased retroreflec-
tion.

6.2 Grooved Surface

A surface consisting of ideal V-grooves all running in a given di-
rection will have itsp(h) proportional to the sum of two delta func-
tions, each accounting for microfacets forming one side of a groove.
Replacing these delta functions with narrow Gaussians (σ = 0.1)
to account for imperfections and going through our generation pro-
cess, we create a BRDF which correctly shows the main feature of
a grooved surface’s reflectance, double reflections. Figure 9 shows
a piece of grooved metal illuminated by asinglelight source. The
orientation of the grooves on the left is perpendicular to the viewing
direction while on the right they are parallel.

Figure 9: Double highlights from a single light source for the
same metallic grooved surface at two orientations of the grooves.
Grooves are symmetrical with the angle of 40 degrees

6.3 Satin

The microstructure of woven cloth is usually thought of as a sym-
metric pattern of interwoven cylindrical fibers running in perpen-
dicular directions. While it would be possible to generate a BRDF
corresponding to this structure with our approach, the surface of
particular fabric we studied had a different microstructure shown
in Figure 10. It is created almost exclusively by fibers running in
one direction with about70% of the fiber length lying in the rel-
atively flat part of the fiber while the other30% corresponding
to the bent parts at the ends. We model the distribution of mi-
crofacets as a linear combination of two terms corresponding to
these flat and bent parts of the cylindrical fiber:p(h) = 0.7 ∗
pflats(h) + 0.3 ∗ pends(h). The coefficients reflect mutual area
contributions of the two parts to the complete distribution. Both
pflats(h) andpends(h) were chosen to be “cylindrical” Gaussian
heightfields (σy = ∞, p(h) = 0 for (hn) < 0) with different
widths. Valuesσx = 0.1 for pflats(h) andσx = 0.3 for pends(h)
were used. Strictly speaking, the shape of realpends(h) would
probably be more accurately modeled by a distribution with flatter
top and faster drop-offs than that of a Gaussian. This was attempted
but the results were almost identical visually, so a simpler Gaussian
distribution was used for the final image. This is consistent with our
belief that the very precise characterization of the microfacet distri-
bution is not needed for visual applications. Note that becauseg(k)
is linear inp(h), no new integration is necessary to computeg(k)
if g’s corresponding topflats(h) andpends(h) are already com-
puted. This suggests an efficient way of creating new distributions
as a linear combination of ones for whichg(k) has been previously
computed. For example, small contribution due to perpendicular
fibers can be added in this manner if necessary.

Because the appearance of real cloth is dramatically affected by
the presence of characteristic wrinkles, we used a dynamic simu-
lation method [17] to create cloth geometry. The left side of Fig-
ure 11 shows a satin tablecloth rendered with generated BRDF. It
is interesting to contrast this image with the image on the right us-
ing the same geometric model with the BRDF described in the next
section.

6.4 Velvet

Velvet is another example of a material with interesting reflectance
properties not easily conveyed by conventional BRDFs. In their vir-
tual gonioreflectometer, Westin et al. [27], model velvet microstruc-
ture as a forest of narrow cylinders (fibers) with the orientation of
each cylinder perturbed randomly. While it is difficult to write an
exactp(h) corresponding to such “surface” for the reasons outlined
in Section 2, a simple intuitive form of this function written as an
“inverse Gaussian” heightfield is enough to capture the main char-



Figure 10: Microgeometry of our sample of satin.

Figure 11:Synthetic satin (left) and velvet (right) tablecloths. The
geometries are identical.

n

<h>

Figure 12: Microgeometry of velvet (left) and p(h) used to model
it (right).

Figure 13:A tablecloth made of two different colors of slanted fiber
velvets.

acter of the distribution:

p(h) = c ∗ exp(− cot2 θ/σ2), (35)

with σ = 0.5 for the image on the right of Figure 11 which shows
a material with distinct velvet-like reflectance properties. Because
retroreflection is one of the most pronounced reflection properties
of velvet [11], we used the correlated form of shadowing term
(Equation 14) to generate both this and slanted fiber (see below)
velvet BRDFs. Contrary to Westin et al. we ignore the tips of
the fibers due to their very small area. If there were any specular
highlights due to the tips, their contribution can be easily added by
forming a linear combination of an inverse Gaussian with a regular
Gaussian distribution.

Although this approach produced good results, a symmetric for-
est of fibers was not what we saw when we examined a piece of
real velvet. More realistic structure is shown on the left of Fig-
ure 12. The fabric consists of rows of tightly woven bundles of
filament. Each bundle is slanted with the angle of about 40 degrees
with respect to the geometric normal of the cloth surface. We can
call this arrangement milliscale geometry in contrast with micro-
geometry formed by the thin fibers themselves. Similar geometry
was credited as the major reason for velvet anisotropic reflection
behavior by Lu et al. [11]. Strictly speaking, our model does not
take into account visibility issues due to this higher-order arrange-
ment of microfacets. The most consistent approach therefore would
be to model this structure explicitly, for example as a collection of
slanted cylinders applying two different BRDFs (both of which can
be generated by our process) to the tops and to the sides of these
cylinders. An easier alternative would be an attempt to create a
simple distribution of microfacetsp(h) which, although potentially
non-physical, can account for the milliscale visibility and produce
a BRDF with necessary reflection properties.

Looking carefully at the velvet highlight structure we saw that
it is the sides of the bundles and not the tops which contribute the
most to the reflection. This suggests that we can try to reproduce
most of the behavior with a specular BRDF based exclusively on
thep(h) accounting for the microfacets on the sides of the bundles.
A “slanted” version of cylindrical Gaussian distribution (σy = ∞,
σx = 0.5) schematically shown on the right of Figure 12 was used.
The only place where we used the part of distribution due to the
tops of the bundles is the computation of〈(hn)〉 when we double
this value due to the tops contribution. Note two facts about this
distribution: it is not a height field and its average vector〈h〉 does
not point in the direction of geometric normal. While the first fea-
ture does not present any problem in our approach, the second one
shows that this distribution is not physically realizable and, as a re-
sult, the energy conservation of the generated BRDF is not guaran-
teed. Computations ofR(k) show that this quantity indeed exceeds
one for 14 out of our 200 directional data points in the hypothetical
case of perfectly reflecting (f0 = 1.0) fiber material but was never
a problem for ourf0 = 0.05 synthetic fibers.

Figure 13 shows the results of this process. The illumination and
viewing directions are almost parallel but due to the slant of the
fibers the left side of the tablecloth is substantially brighter than the
right one. This is in good agreement with the behavior of real velvet
we observed. The right image of Figure 13 shows some limitations
of our approach. Because we do not handle the details of multiple-
bounce scattering and simply introduce a diffuse term to account
for them, the right side of the red tablecloth does not look as it does
for the real velvet. In the real material, light experiences multiple
bounces among the red fibers for this viewing geometry acquiring a
deep dark (almost black) color in the process. This is not captured
by our simple diffuse term.



6.5 Unusual Distributions

We can take to extreme the use of the desired reflection properties
as the only guidance in creating the distributionp(h) regardless of
whether a material described by this function exists or is even physi-
cally possible. For example, we can modulate a Gaussianp(h) with
an arbitrary function or even an image to create the unusual high-
lights shown in Figure 1. As long as the modulation is symmetric
enough to keep the average vector〈h〉 in the normal direction (such
as the distribution used for the image on the left of Figure 1), the
BRDF will be energy conserving. A more general modulation may
result in〈h〉 no longer parallel ton but in practice we notice that
as long as this effect is not very strong, the energy conservation
is not affected. For example, image on the right of Figure 1 was
created with an energy conserving BRDF. While such unusual dis-
tributions are not of great value in realistic image synthesis, they
clearly demonstrate the generality of our approach and can poten-
tially find applications in the special effects industry.

7 Conclusion

The new BRDF model presented in this paper is well-suited to sur-
faces whose primary characteristic is the shape of the specular high-
light. We have found it reasonably straightforward to design new
BRDFs for surfaces because the diffuse term and energy conser-
vation are handled in a natural manner that does not require sub-
stantial user intervention, and the parameters used in the model are
intuitive. However, for surfaces whose appearance is not dominated
by the specular highlight, our model is not well-suited.

We have found that using our model does not require much hand-
tuning of parameters; the images in the last section were generated
with very few iterations on parameter values. We speculate that
a model for subsurface effects in a similar spirit to our model is
possible. The user would specify some simple parameters analo-
gous top(h) and a BRDF would be generated. We also believe that
there should ultimately be separate terms for the components of
the BRDF accounted for by primary specular reflection, multiple-
bound specular reflection, and subsurface scattering.
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