D Disney Enterprises, Inc. and Pikar Anirmation
Studios

Introduction to
Shading Language

- This chapter provides a refresher on the RenderMan Shading Lan-

guage. However, it is not a tutorial on programming in general, nor
is it intended to be a substitute for The RenderMan Companion or the
RenderMan Interface Specification. But rather it is meant to serve as a
handy quick reference guide to Shading Language itself.

Shading Language is loosely based on the C programming language.
We will use this to our advantage in this chapter by assuming that (1)
you already know about general programming concepts such as vari-
ables, loops, and so on; (2) you are reasoﬁably familiar with C; (3) your
mathémarical background is sufficient to allow casual discussion of
trigonometry and vector algebra; (4) you have sufficient background
in computer graphics to unde_rstand intermediate-level concepts re-
lated to illumination EOmputaﬁons. If you are lacking in any of these

areas, you should review the material in Chapter 2 and its references.

159

160

7.1

7.1.1

7 Introduction to Shading Language

Shader Philosophy

Many renderers have a fixed shading model. This means that a single equation is
used to determine the appearance of surfaces and the way that they respond to
light. For example, many renderers use simple Phong illumination, which looks like
this:
nlights
Coutput = KaCamp + Z (KaCuaie (N - Li)Cl; + Kscspec(R < Li)™)

i=1
where

m [; and Cl; are the direction and color, respectively, of light number i

W Kj, Kg, Ks, 1, Camb, Caitr, and Cspec are user-specified parameters to the equation.
By changing these parameters, the user can make different objects look as if they
are made of different materials

m N is the surface normal and R is the mirror reflection direction from the point
of view of the camera

B Coutput 18 the resulting color of the surface

This particular equation is especially common and tends to make objects appear as
though they are made of plastic if Cspec is white and somewhat like metal if both
Cspec and Cyifr are set to the same color.

Because a world made of flat-colored plastic would hardly be interesting, a com-
mon extension to this scheme is to allow the use of stored image files to determine
the value of Cqaig as it varies across the surface (this is called “texture mapping”) or
to modulate the surface normal N (“bump mapping”). Somewhat more sophisticated
renderers may allow an image file to modulate any of the user-supplied parameters,
but this still does not change the fundamental form of the shading equation, and
therefore the resulting materials have a rather narrow range of appearances. Fur-
thermore, even when using stored images to modulate the surface parameters, you
are limited to the few kinds of modulations allowed by the renderer, and stored tex-
tures have a variety of limitations including limited resolution, obvious tiling and
repetition artifacts, storage costs, and the problem of how the image textures get
created in the first place.

Shading Language Overview

In contrast to this scheme, RenderMan-compliant renderers do not use a single
shading equation. Rather, a programming language is used to describe the inter-
actions of lights and surfaces. This idea was pioneered by Rob Cook (Cook, 1984),
and further elaborated by Pat Hanrahan in the RenderMan Specification itself (Pixar,
1989; Hanrahan and Lawson, 1990) and by the PRMan product. The programs de-
scribing the output of light sources, and how the light is attenuated by surfaces and

7.1

Shader Philosophy 161

volumes, are called shaders, and the programming language that we use is known
as Shading Language.

The RenderMan Interface Specification describes several types of shaders, distin-
guished by what quantities they compute and at what point they are invoked in the
rendering pipeline:

Surface shaders describe the appearance of surfaces and how they react to the
lights that shine on them.

Displacement shaders describe how surfaces wrinkle or bump.

Light shaders describe the directions, amounts, and colors of illumination dis-
tributed by a light source in the scene.

Volume shaders describe how light is affected as it passes through a participating
medium such as smoke or haze.

Imager shaders describe color transformations made to final pixel values before
they are output. (Programmable imager shaders are supported by BMRT, but not
by PRMan.)

All shaders answer the question “What is going on at this spot?” The execution
model of the shader is that you (the programmer) are only concerned with a single
point on the surface and are supplying information about that point. This is known
as an implicit model, as compared to an explicit model, which would be more of the
flavor “draw feature X at position Y.” The job of a surface shader is to calculate the
color and opacity at a particular point on some surface. To do this, it may calculate
any function, do texture map lookups, gather light, and so on. The shader starts out
with a variety of data about the point being shaded but cannot find out about any
other points.

The RenderMan Shading Language is a C-like language you can use to program
the behavior of lights and surfaces. Shading Language gives you

m basic types useful for manipulating points, vectors, or colors

m mathematical, geometric, and string functions

m access to the geometric state at the point being shaclecl including the position,
normal, surface parameters, and amount of incoming light

m parameters supplied to the shader, as specified in the declaration of the shader
or alternatively attached to the geometry itself

With this information, the goal of the surface shader is to compute the resulting
color, opacity, and possibly the surface normal and/or position at a particular point.

The remainder of this chapter will give a quick introduction to the RenderMan
Shading Language, with an emphasis on the basic functionality you will need to
write surface and displacement shaders. The vast majority of shaders written for
production are surface shaders. Although volume and light shaders are also im-
portant, they are more esoteric and less frequently written and so will be covered
separately elsewhere in this book.

162

7.1.2

7 Introduction to Shading Language

1 surface

2 plastic (float Ka=1, Kd=1, Ks=0.5, roughness = 0.1;
3 color specularcolor = 1;

4

5 {

6 /* Simple plastic-Tike reflection model */

7 normal Nf = faceforward(normalize(N),I);

8 vector V = -normalize(I);

9 Ci = Cs * (Ka*ambient() + Kd*diffuse(Nf))
10 + Ks*specularcolor*specular(Nf,V, roughness);
11 0i =0s; Ci *= 0i;
12 }

Quick Tour of a Shader

Listing 7.1 is an example surface shader that roughly corresponds to the single
built-in shading equation of many renderers. If you are an experienced C program-
mer, you will immediately pick out several familiar concepts. Shaders look rather
like C functions.

Lines 1 and 2 specify the type and name of the shader. By convention, the source
code for this shader will probably be stored in a disk file named plastic.s1, which

 is simply the shader name with the extension .s1. Lines 2-4 list the parameters to

the shader and their default values. These defaults may be overridden by values
passed in from the RIB stream. Lines 5-12 are the body of the shader. In lines
7-8, we calculate a forward-facing normal and a normalized “view” vector, which
will be needed as arguments to the lighting functions. Lines 9-10 call several built-
in functions that return the amount of ambient, diffuse, and specular reflection,
scaling each by different weights, and summing them to give the final surface color
Ci. Because surface shaders must set associated colors and opacities, line 11 sets
the final opacity 01 simply to the default opacity of the geometric primitive, Os,
and then multiplies Ci by 01, in order to ensure that it represents associated color
and opacity. Note that several undeclared variables such as N, I, and Cs are used in
the shader. These are so-called global variables that the renderer precomputes and
makes available to the shader.

Most surface shaders end with code identical to lines 7-11 of the example. Their
main enhancement is the specialized computations they perform to select a base
surface color, rather than simply using the default surface color, Cs. Shaders may
additionally change the weights of the various lighting functions and might modify
N and/or P for bump or displacement effects.

7.2

7.2

7.2.1

7.2.2

Shading Language Data Types 163

o

float Scalar floating-point data (numbers)

Cstri ng Character smngs (such as ﬂlenames)

Shading Language Data Types

Shading Language provides several built-in data types for performing computations
inside your shader as shown in Table 7.1. Although Shading Language is superfi-
cially similar to the C programming language, these data types are not the same as
those found in C. Several types are provided that are not found in C because they
make it more convenient to manipulate the graphical data that you need to ma-
nipulate when writing shaders. Although float will be familiar to C programmers,
Shading Language has no double or int types. In addition, SL does not support
user-defined structures or pointers of any kind.

Floats

The basic type for scalar numeric values in Shading Language is the float. Because
SL does not have a separate type for integers, float is used in SL in circumstances
in which you might use an int if you were programming in C. Floating-point con-
stants are constructed the same way as in C. The following are examples of float
constants: 1, 2.48, -4.3e2.

Colors

Colors are represented internally by three floating-point components.! The com-
ponents of colors are referent to a particular color space. Colors are by default
represented as RGB triples ("rgb" space). You can assemble a color out of three

! Strictly speaking, colors may be represented by more than three components. But since all known
RenderMan-compliant renderers use a three-component color model, we won't pretend that you must be
general. It's highly unlikely that you'll ever get into trouble by assuming three color components.

164

7.2.3

7 Introduction to Shading Language

"rgb" The coordinate system that all colors start out in and in which the
renderer expects to find colors that are set by your shader (such as
. C"; 01, and C.‘)_.-._ .

floats, either representing an RGB triple or some other color space known to the
renderer. Following are some examples:

color (0, 0, O) /* black */
color "rgb" (.75, .5, .5) /* pinkish */
color "hsv" (.2, .5, .63) /* specify in "hsv" space */

All three of these expressions return colors in "rgb" space. Even the third example
returns a color in "rgb" space—specifically, the RGB value of the color that is equiv-
alent to hue 0.2, saturation 0.5, and value 0.63. In other words, when assembling a
color from components given relative to a specific color space in this manner, there
is an implied transformation to "rgb" space. The most useful color spaces that the
renderer knows about are listed in Table 7.2.

Colors can have their individual components examined and set using the comp
and setcomp functions, respectively. Some color calculations are easier to express
in some color space other than "rgb". For example, desaturating a color is more
easily done in "hsv" space. Colors can be explicitly transformed from one color
space to another color space using ctransform (see Section 7.5 for more details).
Note, however, that Shading Language does not keep track of which color variables
are in which color spaces. It is the responsibility of the SL programmer to track this
and ensure that by the end of the shader, Ci and 01 are in the standard "rgb" space.

Points, Vectors, Normals

Points, vectors, and normals are similar data types with identical structures but
subtly different semantics. We will frequently refer to them collectively as the
“point-like” data types when making statements that apply to all three types.

A point is a position in 3D space. A vector has a length and direction but
does not exist in a particular location. A normal is a special type of vector that
is perpendicular to a surface and thus describes the surface’s orientation. Such a
perpendicular vector uses different transformation rules from ordinary vectors, as
we will discuss in this section. These three types are illustrated in Figure 7.1.

7.2

Shading Language Data Types 165

° normal n
point P vector v

Figure 7.1 Points, vectors, and normals are all comprised of three
floats but represent different entities—positions, directions, and
surface orientations.

oP

camera

object

world

Figure 7.2 A point may be measured relative to a variety of coordinate systems.

All of these point-like types are internally represented by three floating-point
numbers that uniquely describe a position or direction relative to the three axes of
some coordinate system.

As shown in Figure 7.2, there may be many different coordinate systems that the
renderer knows about (“world” space and a local “object” space, for example, were
discussed in Chapter 3; others will be detailed later). Obviously, a particular point
in 3D can be represented by many different sets of three floating-point numbers—
one for each coordinate system. So which one of these spaces is the one against
which your points and vectors are measured? ’

All points, vectors, and normals are described relative to some coordinate sys-
tem. All data provided to a shader (surface information, graphics state, parameters,
and vertex data) are relative to one particular coordinate system that we call the
"current" coordinate system. The "current"” coordinate system is one that is con-
venient for the renderer’s shading calculations.

You can “assemble” a point-like type out of three floats using a constructor:

point (0, 2.3, 1)
vector (a, b, ©
normal (0, 0, 1)

166

7 Introduction to Shading Language

These expressions are interpreted as a point, vector, and normal whose three com-
ponents are the floats given, relative to "current"” space. For those times when
you really need to access or set these three numbers, SL provides the routines
Xcomp, ycomp, zcomp, comp, setxcomp, setycomp, setzcomp, setcomp (see Sec-
tion 7.5).

As with colors, you may also specify the coordinates relative to some other
coordinate system:

Q = point "object" (0, 0, 0);

This example assigns to Q the point at the origin of "object" space. However,
this statement does not set the components of Q to (0,0,0)! Rather, Q will contain the
"current" space coordinates of the point that is at the same location as the origin
of "object" space. In other words, the point constructor that specifies a space name
implicitly specifies a transformation to "current™ space. This type of constructor
also can be used for vectors and normals.

The choice of "current" space is implementation dependent. For PRMan, "cur-
rent” space is the same as "camera" space; and in BMRT, "current" space is the
same as "world" space. Other renderers may be different, so it’s important not to
depend on "current" space being any particular coordinate system.

Some computations may be easier in a coordinate system other than "current"
space. For example, it is much more convenient to apply a “solid texture” to a mov-
ing object in its "object" space than in "current" space. For these reasons, SL
provides built-in functions that allow you to transform points among different co-
ordinate systems. The built-in functions transform, vtransform, and ntransform
can be used to transform points, vectors, and normals, respectively, from one co-
ordinate system to another (see Section 7.5). Note, however, that Shading Language
does not keep track of which point variables are in which coordinate systems. It
is the responsibility of the SL programmer to keep track of this and ensure that,
for example, lighting computations are performed using quantities in "current"
space.

Be very careful to use the right transformation routines for the right point-like
types. As described in Chapter 2, points, direction vectors, and surface normals all
transform in subtly different ways. Transforming with the wrong matrix math will
introduce subtle and difficult-to-fix errors in your code. Therefore, it is important
to always use transform for points, vtransform for vectors, and ntransform for
normals.

Several coordinate systems are predefined by name in the definition of Shading
Language. Table 7.3 summarizes some of the most useful ones. The RIB statement
CoordinateSystem (or C API RiCoordinateSystem) may be used to give additional
names to user-defined coordinate systems. These names may also be referenced
inside your shader to designate transformations.

7.2

724

167

Shading Language Data Types

"current” The coordinate system that all points start out in and the one
in which all lighting calculations are carried out. Note that the
hoi f "current " space may be different on each renderer.

The coordinate Sy'st-em“active at the time that the shader
was declared (by the Surface, Displacement, or LightSource
statement).

o)

The coordinate system with its origin at the center of the
camera lens, x-axis pointing right, y-axis pointing up, and
z-axis pointing int

The 2D projected space of the final output image, ith units
of pixels. Coordinate (0,0) in "raster™ space is the upper-left
corner of the image, with x and ¥ increasing to the right and
down, respectively.

Matrices

Shading Language has a matrix type that represents the transformation matrix re-
quired to transform points and vectors between one coordinate system and another.
Matrices are represented internally by 16 floats (a 4 x 4 homogeneous transforma-
tion matrix). Beware if you declare a matrix of storage class varying. That’s going

to be a lot of data!
A matrix can be constructed from a single float or 16 floats. For example:

matrix zero = 0; /* makes a matrix with all 0 components */
matrix ident = 1; /* makes the identity matrix */

/* Construct a matrix from 16 floats */
matrix m = matrix (m00, m0l, m02, m03, mlO, mll, ml2, ml3,
m20, m21, m22, m23, m30, m31, m32, m33);

Assigning a single floating-point number x to'a matrix will result in a matrix with
diagonal components all being x and other components being zero (i.e., x times the

168

7.2.5

7.3

7 Introduction to Shading Language

identity matrix). Constructing a matrix with 16 floats will create the matrix whose
components are those floats, in row-major order.

Similar to point-like types, a matrix may be constructed in reference to a named
space:

/* Construct matrices relative to something other than "current" */

matrix q = matrix "shader" 1;

matrix m = matrix "world" (m0O, m0l, m02, m03, ml0, mll, ml2, ml3,
m20, m21, m22, m23, m30, m31, m32, m33);

The first form creates the matrix that transforms points from "current” space to
"shader" space. Transforming points by this matrix is identical to calling trans-
form("shader", ...). The second form prepends the current-to-world transforma-
tion matrix onto the 4 x 4 matrix with components mg, .. . m3 3. Note that although
we have used "shader" and "world" space in our examples, any named space is
acceptable.

Matrix variables can be tested for equality and inequality with the == and =
Boolean operators. Also, the * operator between matrices denotes matrix multipli-
cation, while m1 / m2 denotes multiplying m1 by the inverse of matrix m2. Thus, a
matrix can be inverted by writing 1/m. In addition, some functions will accept ma-
trix variables as arguments, as described in Section 7.5.

Strings

The string type may hold character strings. The main application of strings is to
provide the names of files where textures may be found. Strings can be checked for
equality and can be manipulated with the fo rmat () and concat() functions. String
constants are denoted by surrounding the characters with double quotes, as in "I
am a string Titeral". Strings in Shading Language may be uniform only.

Shading Language Variables

There are three kinds of variables in Shading Language: global variables, local vari-

ables, and shader parameters. These correspond pretty much exactly to the globals,

locals, and parameters of a subroutine in a language like C. The one difference is

that variables in Shading Language not only have a data type (f1 oat, point, etc.) but

also a designated storage class. The storage class can be either uniform or varying

(except for strings, which can only be uniform). Variables that are declared as uni-

form have the same value everywhere on the surface. (Note that you may assign to,

or change the value of, uniform variables. Do not confuse uniform with the concept”
of “read-only.”) Variables that are declared as varying may take on different values

at different surface positions.

7.3 Shading Language Variables 169

point P Position of the point you are shading. Changing this
variable displaces the surface.
e S5 s

normal Ng The true surface normal at P. This can differ from N;
N can be overridden in various ways including bump
mapping and user-provided vertex normals, but Ng
is always the true surface normal of the facet you
are shading.

© float s, t - The 2D texturing coordmates of P. These Values can
: default to u, v, but a number of mechanisms can
_ overnde the orlg'mal

e T

values

vector L - These'van-a-tblés-. contam the mformatlon commg- "
color C1 from the lights and may be accessed from inside
iTTumi nance loops only

7.3.1 Global Variables

So-called global variables (sometimes called graphics state variables) contain the
basic information that the renderer knows about the point being shaded, such
as position, surface orientation, and default surface color. You need not declare
these variables; they are simply available by default in your shader. Global variables
available in surface shaders are listed in Table 7.4.

7.3.2 Local' Variables

Local variables are those that you, the shader writer, declare for your own use. They
are analogous to local variables in C or any other general-purpose programming
language.

170

7.3.3

7 Introduction to Shading Language

The syntax for declaring a variable in Shading Language is (items in brackets are
optional)

[class] type variablename [= initializer]
where

m the optional class specifies one of uniform or varying. If class is not specified, it
defaults to varying for local variables.

W {ypeis one of the basic data types, described earlier.

B variablename is the name of the variable you are declaring.

m if you wish to give your variable an initial value, you may do so by assigning an
initializer.
Recent renderers also support arrays, declared as follows:
class type variablename [arraylen 1 = { init0, initl . . .}

Arrays in Shading Language must have a constant length; they may not be dynami-
cally sized. Also, only 1D arrays are allowed. Other than that, however, the syntax of
array usage in Shading Language is largely similar to C. Some examples of variable
declarations are

float a; /* Declare; current value is undefined */
uniform float b; /* Explicitly declare b as uniform */
float ¢ = 1; /* Declare and assign */

float d = b*a; /* Another declaration and assignment */
float e[10]: /* The variable e is an array */

When you declare local variables, you will generally want them to be varying.
But be on the lookout for variables that take on the same value everywhere on the
surface (for example, loop control variables) because declaring them as uniform
may allow some renderers to take shortcuts that allow your shaders to execute more
quickly and use less memory. (PRMan is a renderer for which uni form variables take
much less memory and experience much faster computation.)

Shader Parameters

Parameters to your shader allow you to write shaders that are capable of simulating
a family of related surfaces. For example, if you are writing a shader for a wood
surface, you may wish to use parameters to specify such things as the grain color
and ring spacing, rather than having them “hard-coded” in the body of the shader.
Parameterizing your shader not only allows you to reuse the shader for a differ-
ent object later but also allows you to write the shader without knowing the value of
the parameter. This is particularly useful if you are working in a production environ-
ment where an art director is likely to change his or her mind about the details of an
object’s appearance after you have written the shader. In this case, it is much easier
to change the parameter value of the shader than to return to the source code and
ry to make deeper changes. For this reason, we strongly encourage parameterizing

7.3

7.3.4

Shading Language Variables 171

your shader to the greatest degree possible, eliminating nearly all hard-coded con-
stants from your shader code, if possible. Well-written shaders for “hero” objects
often have dozens or even hundreds of parameters.

Here is an example partial shader, showing several parameters being declared:

surface pitted (float Ka=1, Kd=1, Ks=0.5;
float angle = radians(30);
color splotcolor = 0;
color stripecolor = color (.5, .5, .75);
string texturename = "";
string dispmapname = "mydisp.tx";
vector up = vector "shader" (0,0,1);
varying point Pref = point (0,0,0);

}
Note the similarity to a function declaration in C. The syntax for parameter dec-
larations is like that for ordinary local variable declarations, except that shader
parameters must be declared with default values assigned to them. If a storage class

is not specifed, it defaults to uniform for shader parameters.
In the RIB file, yow’ll find something like

Declare "Kd" "float"

Declare "stripecolor" "color"

Surface "pitted” "Kd" [0.8] "stripecolor" [.2 .3 .8]
Sphere 1 -1 1 360

The Surface line specifies that the given shader should become part of the attribute
state and hence be attached to any subsequent geometric primitives. That line not
only specifies the name of the shader to use but also overrides two of its parameter
values: Kd and stripecolor. Notice that prior to their use, those parameters are
declared so that the renderer will know their types.

Declarations and Scoping

It is worth noting that a local variable declaration is just an ordinary program state-
ment; a declaration may be placed anywhere that a statement would be allowed. In
particular, it is not necessary to sharply divide your shader such that all variables
are declared, then all statements are listed with no further variable declarations.
Rather, you may freely mix variable declarations and other statements as long as
all variables are declared prior (textually) to their first use. This is largely a stylistic
choice, but many programmers feel that declaring variables near their first use can
make code more readable.

172

7.4

7.4.1

7 Introduction to Shading Language

Declarations may be scoped, as in C, by enclosing a group of statements inside
curly braces. For example,

float x = 2; /* outer declaration */
{
float x = 1; /* inner declaration */
printf("%f\n", x);
}
printf ("%f/n", x);

In this code fragment, the first printf statement will produce 1, but the second
printf will produce 2. In other words, the variable x declared in the inner scope
hides the similarly named but nevertheless separate variable x declared in the outer
scope. '

Statements and Control Flow

The body of a shader is a sequence of individual statements. This section briefly
explains the major types of statements and control-flow patterns in Shading Lan-

guage.

Expressions

The expressions available in Shading Language include the following:

W constants: floating point (e.g., 1.0, 3, -2. 35e4), string literals (e.g., "hel To"), and
the named constant PI

® point, vector, normal, or matrix constructors, for example: point "world"
(1,2,3)

m variable references

® unary and binary operators on other expressions, for example:

- expr (negation)

expr + expr (addition)

expr * expr (multiplication)

expr - expr (subtraction)

expr / expr (division)

expr A expr (vector cross product)
expr . expr (vector dot product)

The operators +, -, *, /, and the unary - (negation) may be used on any of
the numeric types. For multicomponent types (colors, vectors, matrices), these
operators combine their arguments on a component-by-component basis,

7.4

7.4.2

Statements and Control Flow 173

The A and . operators only work for vectors and normals and represent cross
product and dot product, respectively.?

The only operators that may be applied to the matrix type are * and /, which
respectively denote matrix-matrix multiplication and matrix multiplication by
the inverse of another matrix.

m type casts, specified by simply having the type name in front of the value to cast:

vector P /* cast a point to a vector */
point f /* cast a float to a point */
color P /* cast a point to a color! */

The three-component types (point, vector, normal, color) may be cast to other
three-component types. A float may be cast to any of the three-component types
(by placing the float in all three components) or to a matrix (which makes a
matrix with all diagonal components being the float). Obviously, there are some
type casts that are not allowed because they make no sense, like casting a point
to a float or casting a string to a numerical type.

m ternary operator, just like C: condition ? exprl : expr2

m function calls

Assignments

Assignments are nearly identical to those found in the C language:
variable = expression ;
arrayvariable[expression] = expression ;

Also, just as in C, you may combine assignment and certain arithmetic operations
using the +=, -=, *=, and /= operators. Examples of declarations and assignments
follow:

a=b; /* Assign b’s value to a */

d += 2; /* Add 2 to d */

e[5] = a; /* Store a’'s value in element 5 of ¢ */
c = e[2]; /* Reference an array element */

Unlike C, Shading Language does not have any of the following operators: inte-
ger modulus (%), bit-wise operators or assignments (&, |, A, &, |=, A=), pre- and
postincrement and decrement (++ and --).

2 Because the vector and normal type are recent additions to SL (with point serving their purposes
previously), most SL compilers will allow the vector operations to be performed on points but will issue a
warning.

174

7.4.3

7.4.4

7 Introduction to Shading Language

Decisions, Decisions
Conditionals in Shading Language work much as in C:

if (condition)
truestatement

and

if (condition)
truestatement

else
falsestatement

The statements can also be entire blocks, surrounded by curly braces. For example,

if (s > 0.5) {
Ci = s;
0i = 1;
} else {
Ci = s+t;
}
In Shading Language, the condition may be one of the following Boolean opera-
tors: ==, |= (equality and inequality); <, <=, >, >= (less-than, less-than or equal,

greater-than, greater-than or equal). Conditions may be combined using the logical
operators: & (and), | | (or), ! (not).

Unlike C, Shading Language has no implied cast from float to Boolean. In other
words, the following is not legal:

float f = 5;
if (F) { /* Not Tlegal */

}

A C programmer may instinctively write this code fragment, intending that the
conditional will evaluate to true if f is nonzero. But this is not the case in Shading
Language. Rather, the shader programmer must write

float f = 5;
if (F!1=0 { /*0OK*/

}

Lather, Rinse, Repeat

Two types of loop constructs work nearly identically to their equivalents in C.
Repeated execution of statements for as long as a condition is true is possible with
awhile statement:

7.5

7.5

Simple Built-in Functions 175

while (condition)
truestatement

Also, C-like for loops are also allowed:

for (init; condition; loopstatement)
body

As with if statements, loop conditions must be relations, not floats. As with
C, you may use break and continue statements to terminate a loop altogether
or skip to the next iteration, respectively. As an enhancement over C, the break
and continue statements may take an optional numeric constant, allowing you to
efficiently exit from nested loops. For example,

for (i =0; 1 <10; i +=1) {
for (3 =0; <55 j+= 1 {
if (...some condition...)
continue 2;

}

In this example, the numeral 2 after the continue indicates that under the appro-
priate conditions, execution should skip to the next iteration in the loop involving
i—that is, the outer loop. If no number indicating a nesting level is given, it is as-
sumed that 1 is intended—that is, that only the current loop should be exited or
advanced.

As discussed in Chapter 6, PRMan shades entire grids at a time by simulating a
virtual SIMD machine. This introduces extra overhead into keeping track of which
points are executing inside the body of loops and conditionals that have varying
conditions. Be sure to declare your loop control variables (the counters controlling
the loop iteration, such as i and j in the example) as uniform whenever possible.
Care that the conditions controlling if, while, and for statements are uniform can
greatly speed up execution of your shaders. In addition, using varying variables
in the condition of a loop or conditional is asking for trouble, because this can
lead to jaggies on your surface and can even produce incorrect results if derivatives
are calculated inside the body of the loop or conditional (see Chapter 11 for more
details).

Simple Built-in Functions

Shading Language provides a variety of built-in functions. Many are described in
this section. For brevity, functions that are identical to those found in the standard
C library are presented with minimal elaboration, as are simple functions that

176

7 Introduction to Shading Language

are adequately explained in both The RenderMan Companion and The RenderMan
Interface 3.1. _

This section documents most of the everyday functions you will use for surface
shaders but is not intended to be comprehensive. Many built-in functions are cov-
ered elsewhere in this book. Functions used for patterns are covered in Chapter 10.
Derivatives (Du(), Dv(), area()) are covered in Chapter 11. Lighting and environ-
ment mapping functions are covered in Chapter 9.

Note that some functions are polymorphic; that is, they can take arguments of
several different types. In some cases we use the shorthand ptype to indicate a type
that could be any of the point-like types point, vector, or normal. (Note that there
is no actual type ptype—we are Jjust using this as shorthand!)

Angles and Trigonometry

float radians (float d)
float degrees (float r)

float sin (float angle)
float cos (float angle)
float tan (float angle)

float asin (float f)

float acos (float f)

float atan (float Y, X)
float atan (float y_over_x)

Angles, as in C, are assumed to be expressed in radians.

Exponentials, etc.

float pow (float x, float y)
float exp (float x)
float log (float x)

float log (float x, base)
Arbitrary base logarithm of x.

float sqrt (float x)
float inversesqrt (float x)

Square root and 1/sqrt.

Miscellaneous Simple Scalar Functions

float abs (float x)
Absolute value of x.

7.5

Simple Built-in Functions : 177

float sign (float x)
Returns 1 if x >0, =1 if x <0, 0if x = 0.
float floor (float x)

float ceil (float x)
float round (float x)

Return the highest integer less than or equal to x, the lowest integer greater
than or equal to x, or the closest integer to x, respectively.

float mod (float a, b)
Just like the frmod function in C, returns a — b * floor(a/b).
float min (type a, b, ...)

float max (typea, b, ...)
float clamp (type x, minval, maxval)

The min and max functions return the minimum or maximum, respectively, of
a list of two or more values. The clamp function returns

min{max(x,minval) ,maxval)

that is, the value x clamped to the specified range. The type may be any of
float, point, vector, normal, or color. The variants that operate on colors or
point-like objects operate on a component-by-component basis (i.e., separately
for x, v, and z).

type mix (type x, y; float alpha)
The mix function returns a linear blending of any simple type (any of float,
point, vector, normal, or color): x * (1 — &) + * (&)

float step (float edge, x)
Returns 0 if x < edge and 1 if x = edge.

float smoothstep (float edge0, edgel, x)
Returns 0 if x < edge0, and 1 if x > edgel and performs a smooth Hermite
interpolation between 0 and 1 when edge0 < x < edgel. This is useful in cases
where you would want a thresholding function with a smooth transition.
Color Operations

float comp (color c; float i)
Returns the ith component of a color.

void setcomp (output color c; float i, float x)
Modifies color ¢ by setting its ith component to value x.

178

7 Introduction to Shading Language

color ctransform (string tospacename; color c_rgh)
color ctransform (string fromspacename, tospacename; color c_from)

Transform a color from one color space to another. The first form assumes
that c_rgb is already an “rgb” color and transforms it to another named color
space. The second form transforms a color between two named color spaces.

Geometric Functions

float xcomp (ptype p)
float ycomp (ptype p)
float zcomp (ptype p)
float comp (ptype p; float i)

Return the x, ¥, z, or simply the ith component of a point-like variable.

void setxcomp (output ptype p; float x)
void setycomp (output ptype p; float x)
void setzcomp (output ptype p; float x)
void setcomp (output ptype p; float i, x)

Set the x, v, z, or simply the ith component of a point-like type. These
routines alter their first argument but do not return any value.

float length (vector V)
float Tength (normal V)

Return the length of a vector or normal.

float distance (point PO, P1)
Returns the distance between two points.

float ptlined (point PO, P1, Q)

Returns the distance from Q to the closest point on the line segment jojm'hg
PO and P1.

vector normalize (vector V)
vector normalize (normal V)

Return a vector in the same direction as V but with length 1—that is, V /
Tength(V) .

vector faceforward (vector N, I, Nref)
vector faceforward (vector N, I)

If Nref . I <0, returns N; otherwise, returns -N. For the version with only
two arguments, Nref is implicitly Ng, the true surface normal. The point of
these routines is to return a version of N that faces towards the camera—in
the direction “opposite” of I.

7.5 Simple Built-in Functions 179

To further clarify the situation, here is the implementation of faceforward
expressed in Shading Language:

vector faceforward (vector N, I, Nref)

{

return (I.Nref > 0) ? —N : N;
}
vector faceforward (vector N, I)
{

extern normal Ng;

return faceforward (N, I, Ng);
}

vector reflect (vector I, N)

For incident vector I and surface orientation N, returns the reflection direc-
tion R = I - 2*(N.I)*N. Note that N must be normalized (unit length) for this
formula to work properly.

vector refract (vector I, N; float eta)

For incident vector I and surface orientation N, returns the refraction direction
using Snell’s law. The eta parameter is the ratio of the index of refraction of
the volume containing I divided by the index of refraction of the volume being
entered.

point transform (string tospacename; point p_current)
vector vtransform (string tospacename; vector v_current)
normal ntransform (string tospacename; normal n_current)

Transform a point, vector, or normal (assumed to be in "current" space) into
the tospacename coordinate system.

point transform (string fromspacename, tospacename; point pfrom)
vector vtransform (string fromspacename, tospacename; vector vfrom)
normal ntransform (string fromspacename, tospacename; normal nfrom)

Transform a point, vector, or normal (assumed to be represented by its
"fromspace" coordinates) into the tospacename coordinate system.

point transform (matrix tospace; point p_current)
vector vtransform (matrix tospace; vector v_current)
normal ntransform (matrix tospace; normal n_current)

point transform (string fromspacename; matrix tospace; point pfrom)

180

7 Introduction to Shading Language

vector vtransform (string fromspacename; matrix tospace; vector vfrom)
normal ntransform (string fromspacename; matrix tospace; normal nfrom)

These routines work just like the ones that use the space names but instead
use transformation matrices to specify the spaces to transform into.

point rotate (point Q; float angle; point PO, P1)

Returns the point computed by rotating point Q by angle radians about the
axis that passes from point PO to P1.

String Functions

void printf (string template, ...)
string format (string template, ...)

Much as in C, printf takes a template string and an argument list. Where
the format string contains the characters %f, %c, %p, %m, and %s, printf will
substitute arguments, in order, from the argument list (assuming that the
arguments’ types are float, color, point-like, matrix, and string, respectively).

The format function, like printf, takes a template and an argument list. But
format returns the assembled, formatted string rather than printing it.

string concat (string s1, ..., sN)
Concatenates a list of strings, returning the aggregate string.

float match (string pattern, subject)

Does a string pattern match on subject. Returns 1 if the pattern exists
anywhere within subject and 0 if the pattern does not exist within subject.
The pattern can be a standard Unix expression. Note that the pattern does
not need to start in the first character of the subject string, unless the pattern
begins with the A (beginning of string) character.

Matrix Functions

float determinant (matrix m)
Returns the determinant of matrix m.

matrix translate (matrix m; point t)
matrix rotate (matrix m; float angle: vector axis)
matrix scale (uniform matrix m; uniform point t)

Return a matrix that is the result of appending simple transformations onto
the matrix m. In each case, all arguments to these functions must be uniform.
These functions are similar to the RIB Translate, Rotate, and Scale com-
mands, except that the rotation angle in rotate() is in radians, not in degrees
as with the RIB Rotate. There are no perspective or skewing functions.

7.6

7.6

Writing SL Functions 181

Writing SL Functions

Even though Shading Language provides many useful functions, you will probably
want to write your own, just as you would in any other programming language.
Defining your own functions is similar to doing it in C:

returntype functionname (params)

{

. do some computations

return return_value ;

1
However, in many ways SL function definitions are not quite like C:

m Only one return statement is allowed per function. The exception to this
rule is for void functions, which have no return type and thus have no return
statement.

m All function parameters are passed by reference.

m You may not compile functions separately from the body of your shader. The
functions must be declared prior to use and in the same compilation pass as the
rest of your shader (though you may place them in a separate file and use the
#include mechanism).?

valid return types for functions are the same as variable declarations: float,
color, point, vector, normal, matrix, string. You may declare a function as void,
indicating that it does not return a value. You may not have a function that returns
an array.

In C, parameters are passed by value, which means that the function has a private
copy that can be modified without affecting the variable specified when the function
was called. SL function parameters are passed by reference, which means that if you
modify it, it will actually change the original variable that was passed. However, any
parameters you want to modify must be declared with the output keyword, as in
the following example:

float myfunc (float f; /* you can’t assign to f */
output float g;) /* but you can assign to g */

In the SL compilers of both PRMan and BMRT, functions are expanded in-line, not
compiled separately and called as subroutines. This means that there is no overhead
associated with the call sequence. The downside is increased size of compiled code
and the lack of support for recursion. -

3 1t's possible that other renderers will allow separate compilation, but as of the time of this writing,
both PRMan and BMRT require functions to be compiled at the same time as the shader body. -

182 7 Introduction to Shading Language

Shading Language functions obey standard variable lexical scope rules. Functions
may be declared outside the scope of the shader itself, as you do in C. By default, SL
functions may only access their own local variables and parameters. However, this
can be extended by use of an extern declaration—global variables may be accessed
by functions if they are accessed as extern variables. Newer SL compilers also
support local functions defined inside shaders or other functions—that is, defined
anyplace where a local variable might be declared. In the case of local functions,
variables declared in the outer lexical scope may be accessed if they are redeclared
using the extern keyword. Following is an example:

float x, y:

float myfunc (float f)

{
float x; /* local hides the one in the outer scope */
extern float y; /* refers to the y in the outer scope */
extern point P; /* refers to the global P */

}

Further Reading

More formal documentation on the RenderMan Shading Language can be found
in the RenderMan Interface Specification (Pixar, 1989) as well as Upstill (1990) and
Hanrahan and Lawson (1990).

Discussions of color spaces can be found in Foley, van Dam, Feiner, and Hughes
(1990), Hall (1989), or Glassner (1995).

