3 FEATURE SELECTION
ASPECTS

With a unified model of feature selection, we are ready to discuss in detail
different aspects of feature selection. The major aspects of feature selection are
(1) search directions (feature subset generation), (2) search strategies, and (3)
evaluation measures. The objective of this chapter is two-fold: (a) to study the
various options for each aspect in a systematic and principled way and (b) to
identify the essential and different characteristics of various feature selection
systems.

3.1 OVERVIEW

The study of different perspectives of feature selection manifests that search and
measure play dominant roles in feature selection; stopping criteria are usually
determined by a particular combination of search and measure. Since search
is about search directions and search strategies, with evaluation measures, we
come up with a 3-dimensional structure, in Figure 3.1, that categorizes all
possible feature selection algorithms in terms of search and measure.

There are 27 possible combinations of feature selection methods, considering
all the possibilities. We will elaborate on each possibility along every dimension



44 FEATURE SELECTION FOR KDD

Generation Scheme

Figure 3.1. Three principal dimensions of feature selection: search strategy, evaluation
measure, and feature generation scheme.

later in this chapter and on individual combinations in Chapter 4. From the
point of view of a method’s output, however, these methods can be grouped
into just two categories. One category is about ranking features according to
some evaluation criterion; the other is about choosing a minimum set of features
that satisfies an evaluation criterion. We first discuss these two categories.

Feature Ranking Algorithms. In this category of feature selection algo-
rithms, one can expect a ranked list of features which are ordered according
to evaluation measures. A measure can be any of accuracy, consistency, infor-
mation, distance, and dependence. In other words, an algorithm of this type
does not tell you what is the minimum set of features, but only the importance
(relevance) of a feature compared to others.

The idea is to evaluate each individual feature with a measure. This evalua-
tion results in a value attached to a feature. Features are then sorted according
to the values. The run time complexity of this simple algorithm (summarized
in Table 3.1) is O(N x n+ N?) where N is the number of features, n the number
of instances: O(n) for step (1); O(N) for step (2); and the for loop repeats
N times. Many variations of this algorithm lead to different feature selection
methods. What is common to these feature ranking methods is a ranked list
of features.

One can simply choose the first M features for the task at hand if he knows
what M is. It may not be so straightforward if M is unknown. Variants of
this algorithm have been designed to overcome the unknown M problem. One



ASPECTS OF FEATURE SELECTION 45

Table 3.1. A univariate feature ranking algorithm.

Ranking Algorithm
Input: x - features, I - measure

initialize: list L = {} /* L stores ordered features*/
for each feature z;, i € {1,...,N}
begin
(1) v = compute(z;,U)
(2} position z; into L according to v;
end

Output: L in which the most relevant feature is placed first.

solution is to use the evaluation measure repeatedly to build a decision tree
classifier (Section 2.4.2 of Chapter 2); the features used in the decision tree are
selected. This variation can solve the unknown M problem. This treatment
conceptually blurs the demarcation between feature ranking algorithms and
minimum subset algorithms. Some researchers did use this method to select
features. However, it may not be wise to use this on the data in which some
irrelevant feature is strongly correlated to the class feature (John et al., 1994).
It is not recommended by (Almuallim and Dietterich, 1994) if the goal is to
find the minimum feature subset.

Minimum Subset Algorithms. It is quite often that one does not know
the number of relevant features. In order to search for it, one may need to de-
sign other types of algorithms since feature ranking algorithms can only order
features. Thus we have this category of minimum subset algorithms. An algo-
rithm in this category returns a minimum feature subset and no difference is
made for features in the subset. Whatever in the subset are relevant, otherwise
irrelevant.

The Min-Set algorithm can be found in Table 3.2. The subsetGenerate()
function returns a subset following a certain search method, in which a stopping
criterion determines when stop is set to true; function legitimacy() returns
true if subset Sy satisfies measure U. Function subsetGenerate() can take
one of the generation schemes.

Here we introduce two types of algorithms from the viewpoint of the end
results of feature selection. The details vary when we discuss each of the three
dimensions (generation scheme, search strategy, and evaluation measure) for
feature selection. In the following sections, we will elucidate each possibility



46 FEATURE SELECTION FOR KDD

Table 3.2. A minimum subset algorithm. # - a cardinality operator returns the number
of features in a set.

Min-Set Algorithm
Input: x - features, U/ - measure

initialize: S = {} /* S holds the minimum set*/
stop = false;
repeat
(1) Sk = subsetGenerate(x) /* stop can be set here*/
if
(2) legitimacy(Sk, U) is true and #(Sk) < #(S)
then
(3) S=5 /* S is replaced by Si*/

until stop = true

Output: S - the minimum legitimate subset of features.

along a single dimension (focusing on one dimension at a time) by giving algo-
rithms and examples.

3.2 BASIC FEATURE GENERATION SCHEMES

We now look at the ways in which feature subsets are generated. For instance,
one can start with an empty set, and fill in the set by choosing the most relevant
features from the original features. Or one can begin with the original full
set, and remove irrelevant features. Among many variations, we choose three
basic schemes (sequential forward, sequential backward and random) plus a
combination of the first two, and others can be obtained by varying some parts
of these basic schemes. ’

3.2.1 Sequential forward generation

This scheme starts with an empty set S and adds features from the original
set F into S sequentially, i.e., one by one. Obviously, if one wants to obtain
a ranked list, this scheme can provide that. In Table 3.3, some algorithmic
details are given. The idea is sequential Jorward generation (hence SFG). At
.each round of selection, the best feature f is chosen by FindNxt(F). f is
added into S and removed from F. So, § grows and F shrinks. There are two
stopping criteria. If one wants to have a minimum feature subset, he can rely



ASPECTS OF FEATURE SELECTION 47

on the first stopping criterion “S satisfies IU”. The generation terminates at the
moment when S satisfies U - the evaluation measure. S is the minimum subset
according to U. I one would like to have a ranked list, he can use only the
second stopping criterion “F = {}”. As we know, the first feature chosen is the
most relevant, and the last feature chosen the least relevant. By adopting only
the second stopping criterion, one can indeed obtain a ranked list. The second
stopping criterion ensures that the algorithm should stop when the evaluation
measure [/ cannot be satisfied even if all attributes are chosen by S (therefore
F is empty). This is quite often when noise is present in the data.

Table 3.3.  Sequential forward feature set generation - SFG.

SFG Scheme
Input: F - full set, U - measure
initialize: S = {} /* S stores the selected features */
repeat

(1) f = FindNxt(F)
(2) S=Su{f)
B) F=F-{f}
until S satisfies U or F = {}

Output: S

SFG is just a simple scheme for forward feature set generation. Other forms
can be easily obtained by varying statement (1) f = FindNxt(F). For instance,
if one suspects that two features together may play a more influential role
(individually they may not), then he may modify FindNxt () into FindNxt2(),
or finding up to the best two features at a time (Liu and Wen, 1993), i.e.,
having one more step of look-ahead. In order to apply FindNxt2(), we need
to try (7) plus (§) combinations in order to find the best one or two features.
Let’s save the chosen features in Sy, the remaining features in S3. Then, we
choose from Sz another one or two features in order to find next best features,
which is determined by the value of U after combining these newly selected
features with the ones in Sy. In theory, one can go up to N-step look-ahead
and check all the combinations in order to choose the best subset. The more the
steps of look-ahead, generally, the better a solution is. Nevertheless, that would
take enormous computing time since the running time needed is exponentially
proportional to the number of features N, or O(2"). Hence, the one-step look-
ahead version of SFG is among the most commonly used schemes in subset
generation because of its efficiency.



48 FEATURE SELECTION FOR KDD

3.2.2  Sequential backward generation

This is a scheme which is quite an opposite of SFG. As shown in Table 34,
the search starts with the full set 7 and finds a feature subset S by removing
one feature at a time, so is named as SBG - sequential backward generation.
Instead of finding the most relevant feature, GetNxt(F) looks for the least
relevant feature f which is then removed from F. Although, it is the same as
in SFG that F shrinks and S grows, but it is F that is the subset sought out.
S only stores the irrelevant features, which may or may not be useful. If the full

satisfy U. The second stopping criterion “F = {}” ensures that the algorithm
should stop if all instances in the data have the same class value. One may
notice that unless F is empty, features in are not ranked. In other words, we
have no idea which features are more relevant than the other, Hence, it is not
a suitable scheme that gives a ranked list, although features in S are ranked
according to their irrelevancy.

Table 3.4.  Sequential backward feature generation - SBG.

SBG Scheme
Input: F - full set, U - measure

initialize: § = {} /* 8 holds the removed features* /
repeat

(1) f = GetNxt(F)

(2) F=F-{f}

(3) S=Su{rf}
until F does not satisfies U/ or F = {}

Output: F U {f}

In the same spirit of FindNxt2(), one may try GetNxt2() or its other varia-
tions. The similar run time complexity analysis applies, and SFG and SBF’s
run time complexities are of the same order. Because of the nature of sequential
removal, the minimal subset obtained in this scheme may not be the absolute
minimal subset (i.e., the optimal one). One way to get the absolute minimal
subset is by trying all the combinations.



ASPECTS OF FEATURE SELECTION 49

3.2.3 Bidirectional generation

As we discussed briefly in Chapter 2, SFG and SBG complement each other.
When the number of relevant features is smaller than N/2, SFG is quicker, if
the number of relevant features {M) is greater than N/2, then SBG is faster.
Without knowing the value of M, one would not have a clue which scheme
between the two is better. Hence, born is this bidirectional generation scheme,
shown in Table 3.5. The basic implementation of this scheme (FBG - forward
and backward generation) is running schemes SFG and SBG in parallel. FBG
stops if either (SFG or SBG) finds a satisfactory subset. A flag is needed to
tell which one has found an optimal subset.

Table 3.5.  Bidirectional feature set generation - FBG.

FBG Scheme
Input: Fy, F, - full set, U - measure N
initialize: S; = {}, /* S; holds the selected features*/
Sy =1{} /* Sy holds the removed features.*/
repeat

(1) fr = FindNxt(Fy) f, = GetNxt(Fy)
(2) Sy =S, u{fy) Fy=Fy ~ {fo}
() Fy = Fy - {fr} So = Sy U{fs}
until (a) Sy satisfies U or F; = {} or
(b) Fy does not satisfies U or Fy = {}

Output: Sy if (a) or AU {fs} if (b)

3.2.4 Random generation

FBG's putting two sequential generation schemes together can help in getting
a valid subset fast on average, but cannot help in finding an absolute minimum
valid set. The sheer reason is that all the above three schemes adopt a hill-
climbing heuristic ho:'ng that by selecting the best (as in SFG) or removing
the worst (as in SBG) sequentially, an absolute minimal subset (optimal) will
emerge. Doing so will surely speed up the selection process, but if they hit a
local minimum (a best subset at that moment), they have no way to get out
because what has been removed cannot be added (as in SBG) and what has
been added cannot be removed (as in SFG). This is one fundamental problem
with a sequential method. Put it another way, the three schemes above cannot



50 FEATURE SELECTION FOR KDD

guarantee to find the optimal feature subset. As opposed to this fixed rule
of sequential generation, we can resort to random feature generation, hoping
to avoid getting stuck at some local minima. This random generation scheme
produces subsets at random. Basically one needs a good random number gen-
erator and tailors it to RandGen(F) so that every combination of features F,
ideally, has a chance to occur and occurs just once. Several implementations of
random number generators can be found in (Press et al., 1992). This scheme is
summarized as § = RandGen(F) in Table 3.11 where S is a subset of features.

Although we introduce four schemes for feature generation in this section,
there are three basic ones, the bidirectional feature generation is a combination
of sequential forward and backward feature generation. Later on throughout
the book, we consider the basic three schemes unless otherwise specified.

3.3 SEARCH STRATEGIES

In the preceding section, we mentioned an issue of optimal subsets when we
discussed the feature generation schemes. This can be further elaborated in
terms of search strategies. Roughly speaking, the search strategies can be of
three types: (1) complete, (2) heuristic, and (3) nondeterministic. In this
section, we will describe the characteristics of these search strategies and their
usages. Then, for each search strategy, we take into account of the three basic
feature generation schemes. As a consequence, we find a big variety of search
methods at our disposal. In the following, we put feature selection into the
perspective of search. The search space consists of all the combinations of
feature subsets. The size of the search space is 2V where N is the number of
features.

3.3.1 Complete search

Exhaustive search is complete since it covers every combination of N fea-
tures, (1), (%), ... Under certain circumstances, search can be complete but
net exhaustive. For instance, if an evaluation measure is monotonic, Branch
& Bound (Narendra and Fukunaga, 1977) is complete search that guarantees
an optimal subset. The difference between complete and exhaustive search is
in that exhaustive search is complete, but complete search is not necessarily
exhaustive. So we use com plete search for both kinds of search. A measure U
is monotonic if for any two subsets 51, S2, and S) C S, then U(S1) > U(S,).

Two classic exhaustive search implementations are depth-first search and
breadth-first search. Both types of search can be forward or backward in feature
generation. In a forward generation scheme, it starts with an empty set, then
considers the possible subsets of one feature, two features, etc. subsequently.
This process is reversed for a backward generation scheme, starting with the



ASPECTS OF FEATURE SELECTION 51

G GO G
G

Figure 3.2a.  Depth-first search ilfustration with three features a, b, c.

P

Figure 3.2b.  Breadth-first search illustration with three features a, b, c.

full set of features. Regardless of their directions, the essence of the two types
of search is the systematic examination of every possible subset. The difference
is how the systematic search is carried out. We adopt the forward generation
scheme in the explanation below. Assume that there are three features a,b,c
in the full set F. We can avoid the duplicates of a subset by following an enu-
meration procedure. With the enumeration procedure, we can create a search
tree instead of a search lattice. Since exhaustive search is under examination,
we will visit all combinations of features (8 states including the empty set). As
shown in Figures 3.2a and 3.2b, the depth-first search goes down one branch,
backtracks to another branch until all braces are generated and checked, while
the breadth-first search does it layer by layer, checking all subsets with one
feature, then with two features, so on and so forth. Both search algorithms
(DEP and BRD) are shown in Tables 3.5a, 3.5b and 3.6.



52 FEATURE SELECTION FOR KDD

Two implementations of depth-first search are presented. One uses an ex-
plicit stack data structure; and the other employs implicit run-time stack. A
stack is a last-in-first-out data structure. Breadth-first search is implemented
using a queue data structure that enqueues subsets at each round of feature
generation, dequeues the first subset in the queue for consideration to expand
the search space. As in the example, the queue contains (a, b, ¢, ab, ac, be,
abc) if no node! is dequeued. When one works on a particular implementation,
one should also give some consideration about the enumeration procedure. The
working of the enumeration procedure is determined by the feature generation
scheme, for instance, one needs to add one feature (choosing from F) at a time
in the forward generation scheme, and to remove one feature at a time in the
backward generation scheme. In Tables 3.5a and 3.5b, however, there is no
explicit mentioning about the enumeration procedure for the sake of simplicity.

Table 3.5a. [Exhaustive search: depth first - DEP with explicit use of a stack.

DEP Algorithm 1
Input: F - full set, § - stack, I/ - measure
initialize: node = null
S = null
DEP (node)

if node is the best subset so far w.r.t. U
Set = node
for all children C of node
push (C, S)
while (notEmpty(S)) {
node = pop (S)
DEP (node) )

Output: Set

Now we have a good picture of exhaustive search, let’s look at an example of
complete search: Branch & Bound search (Narendra and Fukunaga, 1977), and
examine the difference between the two types of search. Branch & Bound is a
variation of depth-first search of a lattice. Without any restriction, therefore, it
is exhaustive search. With a given bound 8, however, the search stops at a node
whose measure is greater than 8, and the branches extended from the node are
pruned. The search backtracks and another branch will be searched. As seen
in Figure 3.3, Branch & Bound usually adopts a backward feature generation



ASPECTS OF FEATURE SELECTION 53

Table 3.5b. Exhaustive search: depth first - DEP without explicit use of a stack.

DEP Algorithm 2
Input: F - full set, U - measure
initialize: node = null
DEP (node)

{

if node is the best subset so far w.r.t. U
Set = node

for all children C of node
DEP (C)

Output: Set

Table 3.6.  Exhaustive search: breadth first - BRD.

BRD Algorithm
Input: F - full set, Q - queue, U - measure
initialize: node = null
Q = null
BRD (node)

{
for all children C of node
enqueue(C, Q)
while (notEmpty(Q)) {
node = dequeue(Q)
if node is the best subset so far w.r.t. U
Set = node
BRD (node) }

Output: Set

scheme and begins with a full set of features. The success of Branch & Bound
depends on a monotonic evaluation measure U. Let’s take U as the number of
errors made by a classifier. The evaluation of each subset S results in a value
of U. If B is 12, as in the example shown in Figure 3.3, the search starts from
the left-most branch, the value of subset (a, b) is 13, which is greater than 8.
Hence it backtracks to subset (a, ¢). Its value is 12, so the search continues.



54 FEATURE SELECTION FOR KDD

Figure 3.3. Branch & Bound search illustration with three features a,b,c. Numbers
beside nodes are their costs.

Since the next two subsets (a) and (c) have higher values (17) the search stops,
and (a, c) is recorded as the best subset so far found. The search continues
to (b, ¢) but its value is greater than 8, and the algorithm returns (a, c) as
the best subset. As we see in the figure, the best subset should be (b) since
it has the lowest U. Branch & Bound could not find it because the measure
U7 used is obviously not monotonic (one case countering the monotonicity of U
is that its value of subset (b, c) is greater than that of subset (c)). If U were
monotonic, it would be guaranteed that the search is complete and subset (b)
would be found. This example (Figure 3.3) illustrates the concept of Branch
& Bound and shows the importance of a monotonic measure. The algorithm
is described in Table 3.7. Later on, in Section “Evaluation Measures”, various
measures including monotonic ones will be introduced.

For exhaustive search, there is no parameter to be specified by a user. How-
ever, this situation changes when one tries to avoid exhaustive search and opts
for complete search, more often than not, one needs to provide values for some
parameters. In this Branch and Bound algorithm, for instance, the bound is
supplied by the user. “How reasonable a bound is” plays a pivotal role. As is
well known, the setting of values for parameters requires some sort of knowl-
edge or educated guesses. In (Siedlecki and Sklansky, 1988), they showed some
heuristic methods of finding a good bound. Later on, we will introduce another
version of branch and bound which automatically sets the bound; the algorithm
is named as ABB (Table 4.3). The reader may notice that the random feature
generation scheme is not mentioned so far. This is because in discussing com-



ASPECTS OF FEATURE SELECTION a5

Table 3.7.  Complete search: Branch & Bound - BAB.

BAB Algorithm
Input: F - full set, Q - queue, U - measure
B - bound for some value of U

initialize: node = F
best =
BAB (node)

for all children C of node {
if (C’s value of U < f) {
/* else, the branch starting with C is pruned*/
if (C’s value < best’s value)

best = C /* remember the best subset*/
BAB (C) i
)
}
Output: best /* the best set w.r.t. U */

plete search, it is natural for us to exclude any randomness as the search must
be at least complete.

3.3.2 Heuristic search

Complete search strategies are usually time consuming. Can we make some
smart choices based on the minimum information available, but without looking
at the whole picture? This is all what heuristic search is about. The rationale
of this non-optimal strategy is three-fold: (1) it is quick to find a solution (i.e.,
a subset of features); (2) it usually can find near optimal solution if not optimal;
and (3) the trade-off of optimality with speed is often worthwhile because of
much gained speed and little loss of optimality (recall that an optimal subset
is & minimum one that satisfies the evaluation criterion). Heuristic feature
selection algorithms abound. We introduce three of them (best-first, beam,
and approximate branch & bound search) in relation with depth-first, breadth-
first, and Branch & Bound.

Best-first search is derived from breadth-first search. Instead of branching
on all nodes at each layer, best-first search expands its search space layer by
layer, evaluates all newly generated subsets (the child nodes of the root in the



56 FEATURE SELECTION FOR KDD

beginning), chooses one best subset at each layer to expand, and repeat this
process until no further expansion is possible. Some researchers call this type of
search myopic since it only cares what is the best at each step. In other words,
it is a one-step look-ahead strategy. A natural modification is to look ahead a
few more steps. Doing so may improve the quality of chosen subsets, but the
run time will be increased exponentially with the increased steps of look-ahead.
The reader can refer to the feature generation schemes such as FindNxt() and
FindNxt2() in Section 3.2. The optimality of a subset is guaranteed only when
exhaustive search is in place. Table 3.8 shows the algorithm for best-first search.
An example is also shown in Figure 3.4 in which a path is depicted. It is clear
that the run time complexity of best-first search is much lower than O(2V)
where N is the total number of available features. As a matter of fact, the
run time complexity is O(mN) where m is the maximum number of children
a node can have, and m is always smaller than N. A node A is a child node
of another node B if and only if (1) |#(A) — #(B)] = 1 and (2) A is different
from B in value by one feature. As in Figure 3.4, (a) is a child node of the
empty set (the root), (a, b) is a child of (a), (a, b, c) is a child of (a, b), but
not of (a) which is a grandparent node.

Table 3.8.  Heuristic search: best-first - BEST,

BEST Algorithm
Input: F - full set, Q - queue, U - measure
initialize: node = null
@ = null
BEST (node)

for all children C of node

Coest 1s the best among all C's w.r.t. U
enqueue(Cyese, Q)
while (notEmpty(Q)) {

node = dequeue(Q)

if node is the best subset so far w.r.t. U

Set = node
BEST (node) }

Output: Set

Beam search can be understood as an extension of best-first search, or a
limited version of breadth-first search. In best-first search, we only choose the
best subset at that moment and proceed further. How about choosing the best



ASPECTS OF FEATURE SELECTION 57

Figure 3.4.  Best-first search illustration with three features a,d, c.

two subsets instead of one? In Figure 3.5, we show a case of beam search that
chooses two best subsets to expand at every layer. As in Table 3.9, one can set
the value of  to 2, 3, or up to N. Beam seatch is in effect breadth-first search
when n = N. The reason we should consider more subsets is simple: we may not
derive the best subset from the best two subsets at earlier steps (Cover, 1974).
By relating beam search to breadth-first search, we clearly witness another
example of trading time with optimality. Beam search’s run time complexity
is between best-first search and breadth-first search.

Approximate Branch & Bound is proposed by (Siedlecki and Sklansky, 1988)
as an extension to Branch & Bound in the realization that it is rare to have a
monotonic evaluation measure. The algorithm is regenerated in Table 3.10.
As was shown in Figure 3.3, the best subset was missed due to the non-
monotonicity of the measure. Can we still reach the best set? The answer
is to relax bound g by 4 so it allows Branch & Bound to continue the search
when g is reached. In our example (first shown in Figure 3.3), now in Fig-
ure 3.6), if § = 1 (recall that § = 12), search does not stop at subset (a, b).
This leads to the finding of the best subset (b) whose U is 9. At the first glance,
one may think why not just take a larger 5. It would achieve the same effect.
However, conceptually, they are different. Introducing 6 is a controlled relax-
ation. As we know that 8 is determined according to some prior knowledge, so
after it is set, it should be left alone. § is something linked with the monotonic-
ity of a measure. When one suspects a measure’s monotonicity, by varying §,
he can get a feeling about the measure. This is a heuristic way of overcoming



58 FEATURE SELECTION FOR KDD

Table 3.9.  Heuristic search: beam search - BEAM.

BEAM Algorithm
Input: F - full set, Q - queue, U - measure
i - a number of best children to evaluate
initialize: node = null
Q = I'll.l"
BEAM (node)

for all children C of node

find 1 best Cheyse’s among all C’s wrt. U
for all Chest’s

enqueue(Chese, @)
while (notEmpty(Q)) {

node = dequeue(Q)

if node is the best subset so far w.r.t. U

Set = node
BEAM (node) }

Output: Set

Figure 3.5.  Beam search illustration with three features a,b,c, n = 2.




ASPECTS OF FEATURE SELECTION 59

the non-monotonicity of a measure. Therefore, Approximate Branch & Bound
does not aim to speed up, but to find the optimal set in case of a non-monotonic
measure. It runs even longer than Branch & Bound.

Table 3.10.  Heuristic search: approximate branch & bound - ABAB.

ABAB Algorithm
Input: F - full set, @ - queue, U - measure
A - bound for some value of U
§ - allowable deviation from 8

initialize: node = F
best = {}
ABAB (node)

for all children C of node {
if (C’s value of U < B +6) {
/* else, the branch starting with C is pruned*/
if (C’s value < best’s value)

best = C /* remember the best subset*/
ABAB (C)
}
}
}
Output: best /* the best set wr.t. U */

3.3.3 Nondeterministic search

For both complete and heuristic search strategies, they share one property
in common, i.e., they are all deterministic. That means no matter how many
times one runs a particular algorithm, he can expect that the solution from any
subsequent run is always the same as that of the first run. Here we introduce
a set of algorithms that share another property - nondeterministic. For such
an algorithm, one should not expect the same solution from different runs.
One of the major motivations for developing this sort of algorithms is to avoid
getting stuck in local minima as in heuristic search. Another motivation is to
capture the interdependence of features which heuristic search is also incapable
of capturing (See Figure 3.4 where the optimal solution (b, ¢) is missed).



60  FEATURE SELECTION FOR KDD

Figure 3.6. Approximate Branch & Bound search illustration with three features a, b, c.

We use one such algorithm shown in Table 3.11 to explain the working
of nondeterministic search. RAND keeps only the current best subset that
satisfies U/ as well as has the smallest cardinality. As RAND continues, it can
only produce a better subset. Statement “print Spe,.” reports a better subset
found. RAND is an any-time algorithm (Boddy and Dean, 1994). It means
that one need not wait until the end of RAND’s running in order to find
a subset. But can it find optimal subsets? If it is allowed a sufficiently long
running period and armed with a good random function, yes, it can. This leads
us to the question when it should stop. The problem with this scheme is that
we don’t know if we have found the optimal subset, we only know that if there
is a better one than Sy.,,, RAND will find it. In some cases, one cannot allow
a program to run forever, therefore, a stopping criterion can be a number of
maximum loops - this guarantees the termination of RAND, or the minimum
cardinality of Sp.,: - obviously this may not assure the stop of RAND. Since
RAND starts with F and ends with S.,¢, it works in a backward fashion
in terms of finding the solution. The way in which features are generated is
random.

Researchers (Siedlecki and Sklansky, 1988) also proposed to apply Genetic
algorithms, and Simulated annealing to feature selection. In.a genetic algo-
rithm (Goldberg, 1989), a solution is usually represented by a finite sequence
of numbers (such a string is called a chromosome, each number is a gene). The
algorithm manipulates a set of chromosomes (the population), in a manner re-
sembling the mechanism of natural evolution. The chromosomes are allowed
to crossover or mutate to produce chromosomes of the next generation. A
crossover of two chromosomes produces offspring chromosomes. For instance,



ASPECTS OF FEATURE SELECTION 61

Table 3.11.  Random search - RAND.

RAND Algorithm
Input: F - full set
U - measure
initialize: § = Sy, = {) /*S - subset set*/
Coear = #(F) /*# - cardinality of a set*/
repeat
S = RandGen(F)
C=#(S) '
if C < Chese A S satisfies U/
Sbe;t =S
Chest =C
print Speye .
until some stopping criterion is satisfied
Output: Sp.,. /*Best set found so far*/

we have two chromosomes {11]000) and (00[111) where | specifies the crossover
point, the crossover of these two chromosomes produces two new chromosomes
(00[000) and (11|111). If each gene represents a feature, the two new chro-
mosomes represent one empty and one full set. A mutation of a chromosome
produces a near identical copy with some components of the chromosome al-
tered. After mutation on the second gene, a chromosome (00{111) becomes
(01]111). A fitness function is required to evaluate the fitness of each chro-
mosome. The fittest survives. If the population has n chromosomes, after
mutation and crossover, only the fittest n chromosomes will make to the next
generation of n chromosomes. A fitness function is, in the context of feature
selection, an evaluation measure. The number of generations a genetic algo-
rithm should produce can be pre-determined. When the algorithm converges
(the population stays unchanged), solutions are reached.

A simulated annealing algorithm transforms an optimization problem in a
problem-specific manner into an annealing problem. Without loss of generality,
the objective function (an evaluation measure) is assumed to be minimized.
Following an annealing schedule, the temperature is set high in the beginning to
allow sufficient active activities (hoping to avoid getting stuck in local minima),
then gradually cools down to certain equilibrium representing the best subset.
Neural networks plus node pruning (Setiono and Liu, 1997) can also be applied
to feature selection. The idea is straightforward: train a multi-layer perceptron
as usual following back-propagation, then prune the connections between layers
as much as possible without sacrificing the predictive accuracy. The input units



62 FEATURE SELECTION FOR KDD

without connections to the hidden units can be removed. The remaining input
units are selected features.

Among the four nondeterministic algorithms, RAND and genetic algo-
rithms produce multiple sol utions, but simulated annealing and neural networks
give single solution. In (Jain and Zongker, 1997) they observe such difference in
reviewing these and some other feature selection algorithms. All of the above
algorithms rely on some evaluation measures to determine the ranks of features
or legitimacy of subsets. With different measures, more variations of feature
selection methods are possible. In the next section, we introduce and discuss
some representative evaluation measures.

3.4 EVALUATION MEASURES WITH EXAMPLES

We recapitulate that there are three types of evaluation measures, i.e., classic,
consistency and accuracy. Classic measures are further divided into informa-
tion, distance, and dependence measures. For two subsets of features, S; and
S;, one is preferred to the other based on a measure U of feature-set evaluation,
Si and S; are indifferent if U(Si) = U(S;) and #(5:) = #(S;) where # is the
cardinality of a set; S; is preferred to S5 i U(S;) = U(S;) but #(S;) < #(S;),
or if U(S;) < U(S;) and #(S:) < #(Sj). We continue here the discussion
about measures in Section 2 of Chapter 2, give details about representative
measures in each type to such an extent that a reader can implement them
with minimum efforts.

In order to show the working of each chosen measure, we use the data intro-
duced in Chapter 1 and reproduce it here in Table 3.12 for easy reference. For
each measure, we give its definition and some details for implementation, and
show by example how it works for the data in Table 3.12. Data are translated
into numbers where for attribute Hair, blonde = 1, brown = 2, and red = 3;
for attribute Height, short = 1, average = 2, and tall = 3; for attribute Weight,
light = 1, average = 2, heavy = 3: for attribute Lotion, yes = 1, no = 0; and
for class attribute Result, sunburned = 1, and none = 0.

3.4.1 Classic measures

The measures here have existed for quite some time and extensively used in pat-
tern recognition (Ben-Bassat, 1982). Many variations have also been proposed
and implemented. As we know, the way of evaluating features is influenced by
feature generation scheme and search strategy. Here we offer the very first step
of feature evaluation - using one classic measure to choose the best feature.
The next step of feature evaluation is about evaluating feature subsets, which
is related to feature generation and search strategy. One heuristic method can
be: after the best feature is chosen, we find the second best feature by pair-



ASPECTS OF FEATURE SELECTION 63

Table 3.12.  An example of feature-based data - revisited.

Hair | Height | Weight | Lotion | Result
1 1 2 1 0 1
iz 1 3 2 1 0
t3 2 1 2 1 0
iy 1 1 2 0 1
1s 3 2 3 0 1
ig 2 3 3 0 0
iz | 2 2 3 0 0
ig 1 1 1 1 0

ing each unchosen feature with the best feature, and select the best pair, then
the best triplet, etc. The run time complexity for the heuristic procedure is
O(N?). One should not be surprised if the ranked list of features thus obtained
is not the same as the ranked list obtained in the first step, nor the optimal list
obtained from complete search.

Before we present the classic measures, some notations are again given for
the reader’s convenience: P(c;) is the prior probabilities for all classes i, and
P(x]e;) is the conditional probabilities of x given class c;. By Bayes’ theorem,
we have

Plapg = HE7), (31)
P(x) = 3~ P(ci) P(x]c:). (32)

In other words, we only need two groups of probabilities (P(c;), P(x|e;)) in
order to get P(ci|x). As an example, we list the priors and class conditional
probabilities in Table 3.13.

Information Gain. Shannon’s entropy is used here as an example of in-
formation gain measure. In Figure 3.7, data D is split by feature X into p
partitions Dy, Ds, ..., Dy, and there are d classes. The information for D at the
root amounts to

d
I(D)=- E Pp(ci)loga Pp(e;),

i=1

the information for D; due to partitioning D at X is

d
I(Df) = =3 Pox(ci)loga Ppx (ci),



64 FEATURE SELECTION FOR KDD

Table 3.13.  Priors and class conditional probabilities for the sunburn data.

Result (Sunburn

No Yes
P(Result) 5/8 3/8
P{Hair=1[Result) 2/5 2/3
P(Hair=2|Result) 3/5 0
P(Hair=3|Result) 0 1/3

P(Height=1|Result) | 2/5 1/3
P(Height=2|Result) | 1/5 2/3
P{Height=3|Result) | 2/5 0

P(Weight=1|Result) | 1/5 1/3
P(Weight=2|Result) | 2/5 1/3
P(Weight=3|Result) | 2/5 1/3
P(Lotion=0|Result) | 2/ 3/3
P(Lotion=1|Result) | 3/ 0

and the information gain due to feature X is defined as

IG(X) = I(D) - Zp: @1(1)" )
- |p|

i=1

where |D[ is the number of instances in D, and Pp(c;) are priors for data D.

D

Dl D2 Dp

Figure 3.7. Information gain calculation example: Data D is partitioned by feature X
into data subsets D;, i = 1,2, ...,p.




ASPECTS OF FEATURE SELECTION 65

Table 3.14.  Ordering features according to their information gains.

Information-Gain
Input: D - the training data set;
A; - all features, 1 =1,2,..., N

initialize: L = {} /*L - empty list*/
fori=1 toN
begin

calculate IG(A;);
insert A; in L in descending order w.r.t. IG(A;);
end
Output: L /*The first A; in L is the best*/

A feature ordering algorithm using information gain is shown in Table 3.14.
Its time complexity to obtain the ranked list L is O(N?) where N is the number
of features. However, it is only O(N) if the best feature is sought.

Let's look at feature Hair which has three values (1, 2, 3). With this feature,
we could partition the data into Dff*'™ = {iy(1),12(0),i4(1),1s(0)}, Divir =
{i3(0),16(0),i7(0)}, and D" = {i5(1)}, where i;(k) represents instance j
with class value k. Since /(D) = —3log2§ — 2log3 = 0.954434, I(DHer) =
2 x (~0.500920.5) = 1, [(DH*") = 0, and I(DF*") = 0, IG(Hair) = I(D) -
41(DHir) = 0.454434. This gain happens to be the largest among the four
IG(X): IG(Lotion) = 0.347590, IG(Height) = 0.265712, and IG(Weight) =
0.015712. Hence, feature Hair is the first in the ranked list.

Information gain has a tendency to choose features with more distinct values.
Information gain ratio was suggested by (Quinlan, 1988) to balance the effect
of many values. It is only applied to discrete features; for continuous features, a
split point is found with the highest gain or gain ratio among the sorted values
in order to split the values into two segments. Thus, information gain can be
calculated as usual.

Distance Measures. We can evaluate features using distance measures.
Simply replacing IG with DD - directed divergence or V - variance, we can
obtain two more algorithms. Since they are very similar to the Information-
Gain algorithm, we will only show their definitions and calculations. In both
measures, we need P(c;|x) which can be calculated via Equation 3.1, P(c;) and
P(x|¢;) can be found in Table 3.13.



66 FEATURE SELECTION FOR KDD

1. Directed divergence DD is shown in Equation 3.3. The features are
ranked as (Hair, Lotion, Height, and Weight) because DD(Hair)= 0.454434,
DD(Height)= 0.265712, DD(Weight)= 0.015712, and DD(Lotion)= 0.347590.

DD(X;) = [(3 Pledx; = og U= hpx, = 2. (39)

2. Variance V is shown in Equation 3.4. The features are ranked as (Lotion,
Hair, Height, and Weight) because V (Hair)= 0.059082, V(Height)= 0.054525,
V(Weight)= 0.005208, and V(Lotion)= 0.064600.

V(X;) = / D Ple:)(P(eilX; = z) - P(ci)Y)P(X; = z)dz. (3.4)

Dependence Measures. If we replace information gain with a dependence
measure in the algorithm shown in Table 3.14, we obtain another algorithm. As
an example, if we adopt Bhattacharyya dependence measure B in Equation 3.5,

a ranked list is obtained as (Hair, Lotion, Height, Weight) because B(Hair)=
2.566696, B(Height)= 2.354554, B(Weight)= 2.101802, and B(Lotion)= 2.469646.
P(z) can be obtained following Equation 3.2 and priors and class conditional

probabilities are found in Table 3.13.

B(X;) =3 ~loglP(c:) f VP =2le)P(X; = 2)dz}  (3.5)

Summary. In the above, we give examples of ranking individual features for
the classic measures. They can be extended to evaluating subsets of features,
although the number of combinations of features is usually too large as we
know. In order to reduce the run time complexity, one way of gradually adding
features is to find the best feature, then find among the rest another feature
that combines with the selected feature(s) to form a new subset of selected
features. More will be elucidated using feature selection methods as examples
in Chapter 4. :

3.4.2 Consistency measures

We introduce inconsistency rate as one of consistency measures. Zero inconsis-
tency means total consistency. Let {/ be an inconsistency rate over the dataset



ASPECTS OF FEATURE SELECTION 67

given a feature subset S;. The inconsistency rate is calculated as follows: (1)
two instances are considered inconsistent if they are the same except for their
class labels (we call these instances as matching instances), for example, for
two instances (0 1 1) and (0 1 0), their values of the first two features are the
same (0 1), but their class labels are different {1 and 0); (2) the inconsistency
count is the number of all the matching instances minus the largest number
of instances of different class labels: for example, in n matching instances, ¢,
instances belong to label), ¢; to labely, and 3 to labelg where ¢; + ¢ + ¢35 = n.
If ¢ is the largest among the three, the inconsistency count is (n — ¢3); and
(3) the inconsistency rate is the sum of all the inconsistency counts divided by
the total number of instances (V). By employing a hashing mechanism, we
can compute the inconsistency rate approximately with a time complexity of
O(N). Any standard data structure text books should have descriptions on
various hashing mechanisms. The interested reader may consult (Kruse et al.,
1997). ) '

Here we give the proof outline to show that this inconsistency rate measure
is monotonic, i.e., for two subsets S; and S;, if S; C S, then U(S;) > U(s;).
Since S; C Sj, the discriminating power of S; can be no greater than that
of Sj. As we know, the discriminating power is reversely proportional to the
inconsistency rate. Hence, the inconsistency rate of S; is greater than or equal
to that of S, or U(S;) > U{(S;). The monotonicity of the measure can also be
analyzed as follows. Consider three simple cases of S, (= S; — Si) without loss
of generality: (i) features in S) are irrelevant, (ii) features in Sy are redundant,
and (iii) features in Sy are relevant. (We consider here data without noise. )
If features in Sy are irrelevant, based on the definition of irrelevancy, these
extra features do not change the inconsistency rate of S since S; is S; U Sk,
so U(S;) = U(S;). Likewise for case (i) based on the definition of redundancy.
If features in Sy are relevant, that means S; does not have as many relevant
features as S;. Obviously, U(Si) > U(S;) in the case of S; C 8;. It is clear that
the above results remain true for cases that Sk contains irrelevant, redundant
as well as relevant features.

As for the sunburn example, the inconsistency rate is zero for the following
cases: (1) two features (Hair and Lotion); (2) first three features (Hair, Height
and Weight); and (3) all super-sets of cases (1) and (2), including the full
set of four features. Since we prefer the subset with the minimum number
of features, we choose case (1). Intuitively, it also makes more sense than
case (2). Why should Height and Weight be linked to sunburned? This is
a hindsight, of course, but it is also an effective way to verify if the results
are sensible using our knowledge. Case (1) can be obtained by a sequential
forward heuristic algorithm, and case (2) can be found by a sequentia! backward
heuristic algorithm.



68 FEATURE SELECTION FOR KDD

Since the condition for Branch & Bound to work optimally is that its evalu-
ation measure be monotonic and this inconsistency rate measure is monotonic,
Wwe can expect to find an optimal feature subset by applying the inconsistency
rate measure to Branch & Bound. Consistency measures are only suitable for
discrete features. For continuous features, they have to be discretized before
this kind of measure can be applied (Catlett, 1991, Kerber, 1992).

3.4.3 Accuracy measures

In theory, any classifier is qualified to provide predictive accuracy as an eval-
uation measure. However, in practice, we are usually constrained by many
factors. Among many, we list three factors: (1) the choice of a classifier -
many classification algorithms are extant for different needs (Mitch, 1997), we
should always keep it in mind that feature selection is performed to improve a
classifier; (2) the speed of learning - how fast can a classifier be induced plays
an important role in practice, some applications can wait, but others cannot;
and (3) the task at hand - generalization from the data is a goal, we do have
tasks that may also emphasize things like explicitness, simplicity, or compre-
hensibility. We may choose one classifier which suits the task at hand best.
However, due to the time constraint, we may exclude those time consuming
learning algorithms such as neural networks, and genetic algorithms. Here we
simplify the issue and assume no specific requirement on a classifier.

A common way of applying accuracy measure is Sequential Backward Search.
The idea is to see if the classifier can maintain its accuracy by removing one
feature at a time until there is only one feature or until accuracy deteriorates
to an intolerable level. In Table 3.15, we present such an algorithm using
the number of features as the stopping criterion. This algorithm's run time
complexity is O(N?) since it removes one feature at a time until only one feature
remains.  However, we need to bear in mind that constructing a classifier, as
in induce(), often requires a similar order of complexity. Its time complexity
varies with different classification algorithms, so it is not given here. Function
reorganize arranges the remaining features in order for easy indexing.

In the sunburn example, we can use a Naive Bayesian Classifier (NBC) in
induce(). With feature set F, NBC'’s accuracy is 100%. By removing one of
four features in turn, we obtain the following according to their accuracy rates
(ER = 1— accuracy):

S = F — {Hair} 87.5%
S; = F — {Height}  100%
S3 = F — {Weight} 100%
Sy = F — {Lotion}  75%



ASPECTS OF FEATURE SELECTION 69

Table 3.15.  Ordering features according to accuracy.

Accuracy
Input: D - the training data set;
F - the full set of features;
A; - featurer, i =1,2,.., N
initialize: S= F /*S - full feature set*/
L={) /*L - empty list */
ER = induce(D,S) /*ER - error rate with set 5%/
repeat
min = ER;
fori=1 to N
begin
S,‘ =5- A,‘
ER; = induce(D,5) .
if min > ER;
min = ER;
index = {
end
N=N-1
remove Ajng.r from S and append it to L
reorganize S from 1 to N

until N = 1
append 4, to L /*Features in L are in original indexes*/
Output: reversed L /*The first A; in L is the best*/

So, we can remove features Height and Weight sequentially (S5 = {Hair,
Lotion}) and repeat the removal of one feature procedure, we have
Sg = S5 — {Hair} 75%
Sy = 85 — {Lotion} 75%
Based on the results above, we have a ranked list {Lotion, Hair, Weight,
Height }.

3.5 CONCLUSION

In this chapter, we study feature selection in three individual aspects: search
direction (how features are generated), search strategy, and evaluation measure.
The isolation of one aspect from the others allows us to focus on the specific
problems each aspect experiences and on the possibilities each aspect can have.
When we discuss each individual aspect, we cannot help sense the interweaving



70 FEATURE SELECTION FOR KDD

effects of the others. A particular method of feature selection is basically a
combination of some possibilities of every aspect. In the beginning of the
book, we started our analysis of perspectives of feature selection in a top-down
approach; after studying each aspect of feature selection here, we are ready to
go up in a bottom-up manner. Combining aspects with different possibilities,
we will be able to create or reproduce many effective feature selection methods.

References

Almuallim, H. and Dietterich, T. (1994). Learning boolean concepts in the
presence of many irrelevant features. Artificial Intelligence, 69(1-2):279-305.

Ben-Bassat, M. (1982). Pattern recognition and reduction of dimensionality. In
Krishnaiah, P. R. and Kanal, L. N., editors, Handbook of statistics-11, pages
773-791. North Holland.

Boddy, M. and Dean, T. (1994). Deliberation scheduling for problem solving
in time-constrained environments. Artificial Intelligence, 67(2):245-285.
Catlett, J. (1991). On changing continuous attributes into ordered discrete

attributes. In European Working Session on Learning.

Cover, T. (1974). The best two independent measurements are not the two
best. IEEE Trans. Systems, Man and Cybernictics, 4:116-117.

Dash, M. and Liu, H. (1997). Feature selection methods for classifications.
Intelligent Data Analysis: An International Journal, 1(3).

Dietterich, T. (1997). Machine learning research: Four current directions. A
Magazine, pages 97-136.

Domingos, P. (1997). Why does bagging work? a Bayesian account and its impli-
cations. In Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining, pages 155 - 158. AAAI Press.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Inc.

Jain, A. and Zongker, D. (1997). Feature selection: Evaluation, application, and
small sample performance. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 19(2):153-158.

John, G., Kohavi, R., and Pfleger, K. (1994). Irrelevant feature and the subset
selection problem. In Machine Learning: Proceedings of the Eleventh Inter-
national Conference, pages 121-129. Morgan Kaufmann Publisher,

Kerber, R. (1992). ChiMerge: Discretization of numeric attributes, In A4A/-
92, Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 123-128. AAAI Press/The MIT Press.

Kruse, R., Tondo, C., and Leung, B. (1997). Data structures & program design
in C. International Edition.



REFERENCES 71

Liu, H. and Wen, W. (1993). Concept learning through feature selection. In
Pmceedmgs of the First Australian and New Zealand Conference on Intelli-
gent Information Systems, pages 293-297.

Mitch, T. (1997). Machine Learning. McGraw-Hill.

Narendra, P. and Fukunaga, K. {1977). A branch and bound algorithm for
feature subset selection. JEEE Trans. on Computer, C-26(9):917-922.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical
Recipes in C. Cambridge University Press, Cambridge.

Quinlan, J. (1988). Decision trees and multi-values attributes. In J.E., H.,
Michie, D., and J., R., editors, Machine Intelligence, volume 11. Oxford
University Press.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Setiono, R. and Liu, H. (1997). Neural network feature selectors IEEE Trans.
on Neural Networks, 8(3):654-662.

Siedlecki, W. and Sklansky, J. (1988). On automatic feature selection. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 2:197-220.



