
Being Bayesian about Network Structure

Nir Friedman
School of Computer Science & Engineering

Hebrew University
Jerusalem, 91904, Israel

nir@cs.huji.ac.il

Daphne Koller
Computer Science Department

Stanford University
Stanford, CA 94305-9010

koller@cs.stanford.edu

Abstract
In many domains, we are interested in analyzing the
structure of the underlying distribution, e.g., whether
one variable is a direct parent of the other. Bayesian
model-selection attempts to find the MAP model and
use its structure to answer these questions. However,
when the amount of available data is modest, there
might be many models that have non-negligible pos-
terior. Thus, we want compute the Bayesian poste-
rior of a feature, i.e., the total posterior probability of
all models that contain it. In this paper, we propose a
new approach for this task. We first show how to ef-
ficiently compute a sum over the exponential number
of networks that are consistent with a fixed ordering
over network variables. This allows us to compute,
for a given ordering, both the marginal probability of
the data and the posterior of a feature. We then use
this result as the basis for an algorithm that approx-
imates the Bayesian posterior of a feature. Our ap-
proach uses an Markov Chain Monte Carlo (MCMC)
method, but over orderings rather than over network
structures. The space of orderings is much smaller and
more regular than the space of structures, and has a
smoother posterior “landscape”. We present empiri-
cal results on synthetic and real-life datasets that com-
pare our approach to full model averaging (when pos-
sible), to MCMC over network structures, and to a
non-Bayesian bootstrap approach.

1 Introduction

In the last decade there has been a great deal of research fo-
cused on the problem of learning Bayesian networks (BNs)
from data [3, 8]. An obvious motivation for this problem is
to learn a model that we can then use for inference or de-
cision making, as a substitute for a model constructed by a
human expert. In certain cases, however, our goal is to learn
a model of the system not for prediction, but for discover-
ing the domain structure. For example, we might want to
use Bayesian network learning to understand the mecha-
nisms by which genes in a cell produce proteins, which in
turn cause other genes to express themselves, or prevent
them from doing so [6]. In this case, our main goal is to
discover the causal and dependence relations between the
expression levels of different genes [12].

The common approach to discovering structure is to use
learning with model selection to provide us with a single

high-scoring model. We then use that model (or its equiv-
alence class) as our model for the structure of the domain.
Indeed, in small domains with a substantial amount of data,
it has been shown that the highest scoring model is or-
ders of magnitude more likely than any other [11]. In such
cases, model selection is a good approximation. Unfortu-
nately, there are many domains of interest where this situ-
ation does not hold. In our gene expression example, it is
now possible to measure of the expression levels of thou-
sands of genes in one experiment [12] (where each gene
is a random variable in our model [6]), but we typically
have only a few hundred of experiments (each of which is
a single data case). In cases, like this, where the amount
of data is small relative to the size of the model, there are
likely to be many models that explain the data reasonably
well. Model selection makes an arbitrary choice between
these models, and therefore we cannot be confident that the
model is a true representation of the underlying process.

Given that there are many qualitatively different struc-
tures that are approximately equally good, we cannot learn
a unique structure from the data. However, there might be
certain features of the domain, e.g., the presence of certain
edges, that we can extract reliably. As an extreme example,
if two variables are very strongly correlated (e.g., deter-
ministically related to each other), it is likely that an edge
between them will appear in any high-scoring model. Our
goal, therefore, is to compute how likely a feature such as
an edge is to be present over all models, rather than a single
model selected by the learning algorithm. In other words,
we are interested in computing:���������
	���������������
	�������	��

(1)

where
������	

is � if the feature holds in
�

and � otherwise.
The number of BN structures is super-exponential in the

number of random variables in the domain; therefore, this
summation can be computed in closed form only for very
small domains, or those in which we have additional con-
straints that restrict the space (as in [11]). Alternatively,
this summation can be approximated by considering only a
subset of possible structures. Several approximations have
been proposed [13, 14]. One theoretically well-founded
approach is to use Markov Chain Monte Carlo (MCMC)

methods: we define a Markov chain over structures whose
stationary distribution is the posterior

����� � � 	
, we then

generate samples from this chain, and use them to estimate
Eq. (1).

In this paper, we propose a new approach for evaluating
the Bayesian posterior probability of certain structural net-
work properties. Our approach is based on two main ideas.
The first is an efficient closed form equation for summing
over all networks with at most

�
parents per node (for some

constant
�

) that are consistent with a fixed ordering over the
nodes. This equation allows us both to compute the overall
probability of the data for this set of networks, and to com-
pute the posterior probability of certain structural features
— edges and Markov blankets— over this set. The second
idea is the use of an MCMC approach, but over orderings of
the network variables rather than directly on BN structures.

The space of orderings is much smaller than the space of
network structures; it also appears to be much less peaked,
allowing much faster mixing (i.e., convergence to the sta-
tionary distribution of the Markov chain). We present em-
pirical results illustrating this observation, showing that our
approach has substantial advantages over direct MCMC
over BN structures. The Markov chain over orderings
mixes much faster and more reliably than the chain over
network structures. Indeed, different runs of MCMC over
networks typically lead to very different estimates in the
posterior probabilities of structural features, illustrating
poor convergence to the stationary distribution; by contrast,
different runs of MCMC over orderings converge reliably
to the same estimates. We also present results showing that
our approach accurately captures dominant features even
with sparse data, and that it outperforms both MCMC over
structures and the non-Bayesian bootstrap of [5].

2 Bayesian learning of Bayesian networks

Consider the problem of analyzing the distribution over
some set of random variables ��� ������� � ��� , based on a fully
observed data set

� �
	��� ��� ������� ���� � ��� , where each
�� � �

is a complete assignment to the variables ��� ������� � ��� .

2.1 The Bayesian learning framework

The Bayesian learning paradigm tells us that we must de-
fine a prior probability distribution

����� 	
over the space of

possible Bayesian networks
�

. This prior is then updated
using Bayesian conditioning to give a posterior distribution����� � �
	

over this space.
For Bayesian networks, the description of a model

�
has

two components: the structure
�

of the network, and the
values of the numerical parameters � � associated with it.
For example, in a discrete Bayesian network of structure

�
,

the parameters � � define a multinomial distribution �������
for each variable ��! and each assignment of values " to#%$ � � ��! 	 . If we consider Gaussian Bayesian networks over
continuous domains, then �&�'�(� contains the coefficients
for a linear combination of " and a variance parameter.

To define the prior
����� 	

, we need to define a discrete

probability distribution over graph structures
�

, and for
each possible graph

�
, to define a continuous distribution

over the set of parameters � � .
The prior over structures is usually considered the less

important of the two components. Unlike other parts of
the posterior, it does not grow as the number of data cases
grows. Hence, relatively little attention has been paid to the
choice of structure prior, and a simple prior is often chosen
largely for pragmatic reasons. The simplest and therefore
most common choice is a uniform prior over structures [8].
An alternative prior, and the one we use in our experiments,
considers the number of options in determining the fami-
lies of

�
. If we decide that a node �)! has

�
parents, then

there are * �,+��-/. possible parents sets. If we assume that we
choose uniformly from these, we get a prior:

������	10 �2!43 � 5 6�7 �� #%$ � � ��! 	 � 8 +&� �
Note that the negative logarithm of this prior corresponds
to the description length of specifying the parent sets, as-
suming that the cardinality of these sets are known. Thus,
we implicitly assume that cardinalities of parent sets are
uniformly distributed.

A key property of all these priors is that they satisfy:9 Structure modularity The prior
������	

can be written
in the form ������	:0 2 !<; � ��! �(#%$

� � ��! 	�	=�
That is, the prior decomposes into a product, with a term
for each family in

�
. In other words the choices of the

families for the different nodes are independent a priori.
Next we consider the prior over parameters,

��� � � � ��	 .
Here, the form of the prior varies depending on the type
of parametric families we consider. In discrete networks,
the standard assumption is a Dirichlet prior over �&����� for
each node �)! and each instantiation " to its parents [8]. In
Gaussian networks, we might use a Wishart prior [9]. For
our purpose, we need only require that the prior satisfies
two basic assumptions, as presented in [10]:9 Global parameter independence: Let �&� � � >@?=A�BC� �ED

be the parameters specifying the behavior of the vari-
able ��! given the various instantiations to its parents.
Then we require that��� � � ����	 � 2 ! ��� �F� � � >@?GA�B4� �ED � ��	 (2)

9 Parameter modularity: Let
�

and
�IH

be two graphs
in which

#%$ � � ��! 	��J#%$ �LK � ��! 	 �NM
then��� �F���(� O � ��	�� ��� �P�'�(� O ��� H 	

(3)

Once we define the prior, we can examine the form of the
posterior probability. Using Bayes rule, we have that����� ��� 	:0 ����� ����	 ������	=�

The term
����� � ��	

is the marginal likelihood of the data
given

�
, and is defined the integration over all possible pa-

rameter values for
�

.

����������	�� � ��������� � � � 	 ��� � � ����	�� � �
The term

����� ��� � � � 	 is simply the probability of the
data given a specific Bayesian network. When the data is
complete, this is simply a product of conditional probabili-
ties.

Using the above assumptions, one can show (see [10]):

Theorem 2.1: If
�

is complete and
������	

satisfies param-
eter independence and parameter modularity , then����������	�� 2 ! score

� � ! � #%$ � � � ! 	 ���
	 �
where score

� � ! �(M ���
	
is� 2�� ����� ! � � � " � � � �P� � � O 	 ��� � � � � O 	�� �F� � � O

If the prior also satisfies structure modularity, we can also
conclude that posterior probability decomposes:����� � � 	�0 2 ! ; � � ! � #%$

� � � ! 	 	 score
� � ! �(#%$ � � � ! 	 � �
	=�

2.2 Bayesian model averaging

Recall that our goal is to compute the posterior probability
of some feature

������	
over all possible graphs

�
. This is

equal to: ��� � ��� 	 � � ������	 ���������
	
The problem, of course, is that the number of possible BN
structures is super-exponential: 	�
 B ���� ��� � D , where

6
is the

number of variables.
We can reduce this number by restricting attention to

structures
�

where there is a bound
�

on the number of
parents per node. This assumption, which we will make
throughout this paper, is a fairly innocuous one. There are
few applications in which very large families are called for,
and there is rarely enough data to support robust parameter
estimation for such families. From a more formal perspec-
tive, networks with very large families tend to have low
score. Let � - be the set of all graphs with indegree bounded
by

�
. Note that the number of structures in � - is still super-

exponential: at least 	 - ��� ��� � .
Thus, exhaustive enumeration over the set of possible BN

structures is feasible only for tiny domains (4–5 nodes).
One solution, proposed by several researchers [11, 13, 14],
is to approximate this exhaustive enumeration by finding
a set � of high scoring structures, and then estimating the
relative mass of the structures in � that contains

�
:

����� � �
	���� ����� ����� � �
	�������	
� ����� #�� ��� ��� 	 �

(4)

This approach leaves open the question of how we con-
struct � . The simplest approach is to use model selection
to pick a single high-scoring structure, and then use that as
our approximation. If the amount of data is large relative
to the size of the model, then the posterior will be sharply
peaked around a single model, and this approximation is a
reasonable one. However, as we discussed in the introduc-
tion, there are many interesting domains (e.g., our biologi-
cal application) where the amount of data is small relative
to the size of the model. In this case, there is usually a large
number of high-scoring models, so using a single model as
our set � is a very poor approximation.

A simple approach to finding a larger set is to record all
the structures examined during the search, and return the
high scoring ones. However, the set of structures found
in this manner is quite sensitive to the search procedure
we use. For example, if we use greedy hill-climbing, then
the set of structures we will collect will all be quite simi-
lar. Such a restricted set of candidates also show up when
we consider multiple restarts of greedy hill-climbing and
beam-search. This is a serious problem since we run the
risk of getting estimates of confidence that are based on a
biased sample of structures.

Madigan and Raftery [13] propose an alternative ap-
proach called Occam’s window, which rejects models
whose posterior probability is very low, as well as com-
plex models whose posterior probability is not substantially
better than a simpler model (one that contains a subset of
the edges). These two principles prune the space of mod-
els considered, often to a number small enough to be ex-
haustively enumerated. Madigan and Raftery also provide
a search procedure for finding these models.

An alternative approach, proposed by Madigan and
York [14], is based on the use of Markov chain Monte Carlo
(MCMC) simulation. In this case, we define a Markov
Chain over the space of possible structures, whose station-
ary distribution is the posterior distribution

����� � �
	
. We

then generate a set of possible structures by doing a random
walk in this Markov chain. Assuming that we continue this
process until the chain mixes, we can hope to get a set of
structures that is representative of the posterior. However,
it is not clear how rapidly this type of chain mixes for large
domains. The space of structures is very large, and the
probability distribution is often quite peaked, with neigh-
boring structures having very different scores. Hence, the
mixing rate of the Markov chain can be quite slow.

3 Closed form for known ordering

In this section, we temporarily turn our attention to a some-
what easier problem. Rather than perform model averag-
ing over the space of all structures, we restrict attention to
structures that are consistent with some known total order-
ing � . In other words, we restrict attention to structures�

where if �)! � #%$ � � �"! 	 then #$� �
. This assumption

was a standard one in the early work on learning Bayesian
networks from data [4].

3.1 Computing marginal likelihood

We first consider the problem of computing the probability
of the data given the ordering:����� � � 	 � �����

�
������� � 	 ����������	

(5)

Note that this summation, although restricted to networks
with bounded indegree and consistent with � , is still expo-
nentially large: the number of such structures is still at least	 - ��� ��� � .

The key insight is that, when we restrict attention to struc-
tures consistent with a given ordering � , the choice of fam-
ily for one node places no additional constraints on the
choice of family for another. Note that this property does
not hold without the restriction on the ordering; for exam-
ple, if we pick � ! to be a parent of � ! , then � ! cannot in
turn be a parent of � ! .

Therefore, we can choose a structure
�

consistent with� by choosing, independently, a family
M

for each node��! . The parameter modularity assumption Eq. (3) states
that the choice of parameters for the family of � ! is inde-
pendent of the choice of family for another family in the
network. Hence, summing over possible graphs consistent
with � is equivalent to summing over possible choices of
family for each node, each with its parameter prior. Given
our constraint on the size of the family, the possible parent
sets for the node � ! is

� !���� � 	�M�� M � ��! � � M �	� � � �
where

M � � ! is defined to hold when all nodes in
M

precede � ! in � . Given that, we have������� � 	0 �����
�
2 ! ; � � ! �(#%$

� � � ! 	�	 2 ! score
� � ! �(#%$ � � � ! 	 � �
	

� 2 ! O �
 ��� ; � ��! �(M 	 score
� ��! �(M � �
	��

(6)

Intuitively, the equality states that we can sum over all net-
works consistent with � by summing over the set of possi-
ble families for each node, and then multiplying the results
for the different nodes. This transformation allows us to
compute

����� � � 	 very efficiently. The expression on the
right-hand side consists of a product with a term for each
node � ! , each of which is a summation over all possible
families for � ! . Given the bound

�
over the number of par-

ents, the number of possible families for a node � ! is at
most * � - . � 6 -

. Hence, the total cost of computing Eq. (6)
is at most

6���6 - � 6 -�� � .
We note that the decomposition of Eq. (6) was first men-

tioned by Buntine [2], but the ramifications for Bayesian
model averaging were not pursued. The concept of
Bayesian model averaging using a closed-form summation
over an exponentially large set of structures was proposed
(in a different setting) in [17].

The computation of
����� � � 	 is useful in and of itself;

as we show in the next section, computing the probability������� � 	 is a key step in our MCMC algorithm.

3.2 Probabilities of features

For certain types of features
�

, we can use the same tech-
nique to compute, in closed form, the probability

��� � � ���� 	
that

�
holds in a structure given the ordering and the

data.
In general, if

��� � 	
is a feature. We want to compute

������� � � �
	 � ��� � ����� � 	������� � 	 �
We have just shown how to compute the denominator. The
numerator is a sum over all structures that contain the fea-
ture and are consistent with the ordering:����� � ��� � 	 � �����

�
������	 ������� � 	 ����������	

(7)

The computation of this term depends on the specific type
of feature

�
.

The simplest situation is when we want to compute the
posterior probability of the

� � ��� ��� that denotes an edge��!�� �"! . In this case, we can apply the same closed form
analysis to (7). The only difference is that we restrict

� !����
to consist only of subsets that contain �)! . Since the terms
that sum over the parents of � - for

����/�
are not disturbed

by this constraint, they cancel out from the equation.

Proposition 3.1:
����� � ��� ��� � � ���
	 ���� O �
 ��� ���O! � ��" ; � ��! �(M 	 score

� ��! �(M ���
	
� O �
 ��� ; � ��! � M 	 score

� ��! � M ��� 	
The same argument can be extended to ask more com-

plex queries about the parents of � ! . For example, we can
compute the posterior probability of a particular choice of
parents, as���E#%$ � � ��! 	 � M � � � � 	 �; � ��! � M 	 score

� ��! �(M ���
	
� O K �
 ��� ; � ��! �(M H 	 score

� �)! � M H ���
	 � (8)

A somewhat more subtle computation is required to com-
pute the posterior of

� � ��# $ ��� , the feature that denotes that��! is in the Markov blanket of � ! . Recall this is the case
if
�

contains the edge �)!�� �$! , or the edge � !%� ��! , or
there is a variable � - such that both edges �)!&� � - and�"!%� � - are in

�
.

Assume, without loss of generality, that � ! precedes �"!
in the ordering. In this case, �)! can be in �"! ’s Markov
blanket either if there is an edge from � ! to � ! , or if� ! and � ! are both parents of some third node �(' . We
have just shown how the first of these probabilities) ! ������ �'� � � � � � � � 	 , can be computed in closed form. We
can also easily compute the probability *+' � ��� � ! � � ! �#%$ � � � ' 	 � � � � 	 that both ��! and �"! are parents of � ' :
we simply restrict

� ' ��� to families that contain both �)! and�"! . The key is to note that as the choice of families of
different nodes are independent, these are all independent
events. Hence, �)! and �"! are not in the same Markov
blanket only if all of these events fail to occur. Thus,

Proposition 3.2:

����� � � # $ ��� � � � � 	 � � 7 � � 7) ! 	 � 2� ��� ��� � � 7 * ' 	
Unfortunately, this approach cannot be used to compute

the probability of arbitrary structural features. For exam-
ple, we cannot compute the probability that there exists
some directed path from �)! to �"! , as we would have to
consider all possible ways in which this path could mani-
fest through our exponentially many structures.

We can overcome this difficulty using a simple sampling
approach. Eq. (8) provides us with a closed form expres-
sion for the exact posterior probability of the different pos-
sible families of the node �)! . We can therefore easily sam-
ple entire networks from the posterior distribution given the
ordering: we simply sample a family for each node, accord-
ing to the distribution in Eq. (8). We can then use the sam-
pled networks to evaluate any feature, such as the existence
of a causal path from �)! to �"! .
4 MCMC methods

In the previous section, we made the simplifying assump-
tion that we were given a predetermined ordering. Al-
though this assumption might be reasonable in certain
cases, it is clearly too restrictive in domains where we have
very little prior knowledge (e.g., our biology domain). We
therefore want to consider structures consistent with all

6��
possible orderings over BN nodes. Here, unfortunately, we
have no elegant tricks that allow a closed form solution.
Therefore, we provide a solution which uses our closed
form solution of Eq. (6) as a subroutine in a Markov Chain
Monte Carlo algorithm [15].

4.1 The basic algorithm

We introduce a uniform prior over orderings � , and define����� � � 	 to be of the same nature as the priors we used
in the previous section. It is important to note that the re-
sulting prior over structures has a different form than our
original prior over structures. For example, if we define����� � � 	 to be uniform, we have that

������	
is not uni-

form: graphs that are consistent with more orderings are
more likely; for example, a Naive Bayes graph is consis-
tent with

� 6 7 � 	 � orderings, whereas any chain-structured
graph is consistent with only one. While this discrepancy
in priors is unfortunate, it is important to see it in propor-
tion. The standard priors over network structures are of-
ten used not because they are particularly appropriate for a
task, but rather because they are simple and easy to work
with. In fact, the ubiquitous uniform prior over structures is
far from uniform over PDAGs (Markov equivalence classes
over network structures) — PDAGs consistent with more
structures have a higher induced prior probability. One
can argue that, for causal discovery, a uniform prior over
PDAGs is more appropriate; nevertheless, a uniform prior
over networks is most often used for practical reasons. Fi-
nally, the prior induced over our networks does have some

justification: one can argue that a structure which is consis-
tent with more orderings makes fewer assumptions about
causal ordering, and is therefore more likely a priori.

We now construct a Markov chain � with state space�
, consisting of all

6��
orderings � ; our construction will

guarantee that � has the stationary distribution
��� � � �
	 .

We can then simulate this Markov chain, obtaining a se-
quence of samples � � ������� � ��� . We can now approximate
the expected value of any function 	 � � 	 as:

IE
 	 � � � � �
 � � 3 � 	 � � � 	=�

Specifically, we can let 	 � � 	 be
����� � � ���
	 for some fea-

ture (edge)
�

. We can then compute 	 � � � 	�� ��� � � � � ���
	 ,
as described in the previous section.

It remains only to discuss the construction of the Markov
chain. We use a standard Metropolis algorithm [15]. We
need to guarantee two things:9 that the chain is reversible, i.e., the probability

��� �
� � H 	 � ��� � H � � 	 ;9 that the stationary probability of the chain is the de-
sired posterior

��� � ���
	 .
We accomplish this goal using a standard Metropolis sam-
pling. For each ordering � , we define a proposal proba-
bility * � � H � � 	 , which defines the probability that the algo-
rithm will “propose” a move from � to � H . The algorithm
then accepts this move with probability

���� � � � ��� � H ���
	 * � � � � H 	��� � � �
	 * � � H � � 	�� �
It is well known that the resulting chain is reversible and
has the desired stationary distribution [7].

We consider several specific constructions for the pro-
posal distribution, based on different neighborhoods in the
space of orderings. In one very simple construction, we
consider only operators that flip two nodes in the ordering
(leaving all others unchanged):

� # � ����� # ! ����� # - ����� # � 	��� � # � ����� # - ����� # ! ����� # � 	 �
Another operator is “cutting the deck” in the ordering:

� #�� ����� # ! # ! � � ����� # � 	��� � # ! � � ����� # � #�� ����� # ! 	=�
We note that these two types of operators are qualitatively

very different. The “flip” operator takes much smaller steps
in the space, and is therefore likely to mix much more
slowly. However, any single step is substantially more ef-
ficient to compute (see below). In our implementation, we
choose a flip operator with some probability) , and a cut
operator with probability � 7) . We then pick each of the
possible instantiations uniformly (i.e., given that we have
decided to cut, all

6
positions are equally likely).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
D

A
G

s

Order

50 inst.
200 inst.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
D

A
G

s

Order

50 inst.
200 inst.

Flare Vote

Figure 1: Comparison of posterior probabilities for differ-
ent Markov features between full Bayesian averaging us-
ing: orderings (

�
-axis) versus PDAGs (� -axis) for two UCI

datasets (5 variables each).

4.2 Computational tricks

Although the computation of the marginal likelihood is
polynomial in

6
, it can still be quite expensive, especially

for large networks and reasonable size
�

. We utilize sev-
eral computational tricks for reducing the complexity of
this computation.

First, for each node �)! , we restrict attention to at most���
other nodes as possible parents (for some fixed

���
).

We select these
� �

nodes in advance, before any MCMC
step, as follows: for each potential parent � ! , we compute
the score of the single edge � ! � � ! ; we then select the� �

nodes � ! for which this score was highest.
Second, for each node �)! , we precompute the score for

some number
���

of the highest-scoring families. Again,
this procedure is executed once, at the very beginning of
the process. The list of highest-scoring families is sorted in
decreasing order; let ��! be the score of the worst family in��! ’s list. As we consider a particular ordering, we extract
from the list all families consistent with that ordering. We
know that all families not in the list score no better than
� ! . Thus, if the best family extracted from the list is some
factor � better than � ! , we choose to restrict attention to the
families extracted from the list, under the assumption that
other families will have negligible effect relative to these
high-scoring families. If the best family extracted is not
that good, we do a full enumeration.

Third, we prune the exhaustive enumeration of fami-
lies by ignoring families that augment low-scoring fami-
lies with low-scoring edges. Specifically, assume that for
some family

M
, we have that score

� � ! � M � �
	
is sub-

stantially lower than other families enumerated so far. In
this case, families that extend

M
are likely to be even

worse. More precisely, we define the incremental value
of a parent � for � ! to be its added value as a single par-
ent: 	 � ��
�� ! 	 � score

� � ! � � 	 7 score
� � ! 	 . If we now

have a family
M

such that, for all other possible parents
� , score

� ��! �(M 	� 	 � ��
���! 	 is lower than the best family
found so far for �)! , we prune all extensions of

M
.

Finally, we note that when we take a single MCMC step
in the space, we can often preserve much of our computa-
tion. In particular, let � be an ordering and let � H be the

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
C

M
C

Exact

5 samples
20 samples
50 samples

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
C

M
C

Exact

5 samples
20 samples
50 samples

Markov Edges

Figure 2: Comparison of posterior probabilities using true
posterior over orderings (

�
-axis) versus ordering-MCMC

(� -axis). The figures show Markov features and Edge fea-
tures in the Flare dataset with 100 samples.

ordering obtained by flipping # ! and # - . Now, consider the
terms in Eq. (6); those terms corresponding to nodes #�� in
the ordering � that precede # ! or succeed # - do not change,
as the set of potential parent sets

� ! � ��� is the same. Further-
more, the terms for # ' that are between # ! and # - also have
a lot in common — all parent sets

M
that contain neither # !

nor # - remain the same. Thus, we only need to subtract
� O �
 ��� ���O ��� � " ; � ��! �(M 	 score

� ��! �(M � �
	

and add
� O �
 ��� K ��O! ��� � " ; � � ! �(M 	 score

� � ! � M ���
	 �
By contrast, the “cut” operator requires that we recompute
the entire summation over families for each variable � ! .
5 Experimental Results

We first compared the exact posterior computed by sum-
ming over all orderings to the posterior computed by sum-
ming over all equivalence classes of Bayesian networks
(PDAGs). (I.e., we counted only a single representative
network for each equivalence class.) The purpose of this
evaluation is to try and evaluate the effect of the somewhat
different prior over structures. Of course, in order to do the
exact Bayesian computation we need to do an exhaustive
enumeration of hypotheses. For orderings, this enumera-
tion is possible for as many as 10 variables, but for struc-
tures, we are limited to domains with 5–6 variables. We
took two data sets — Vote and Flare — from the UCI repos-
itory [16] and selected five variables from each. We gen-
erated datasets of sizes � � and 	 � � , and computed the full
Bayesian averaging posterior for these datasets using both
methods. Figure 1 compares the results for both datasets.
We see that for small amounts of data, the two approaches
are slightly different but in general quite well correlated.
This illustrates that, at least for small data sets, the effect of
our different prior does not dominate the posterior value.

Next, we compared the estimates made by our MCMC
sampling over orderings to estimates given by the full

Structure

-2500

-2450

-2400

-2350

-2300

-2250

-2200

0 20000 40000 60000 80000 100000 120000

sc
or

e

iteration

empty
greedy

-9400

-9200

-9000

-8800

-8600

-8400

0 100000 200000 300000 400000 500000 600000

sc
or

e

iteration

empty
greedy

-19000

-18500

-18000

-17500

-17000

-16500

-16000

0 100000 200000 300000 400000 500000 600000

sc
or

e

iteration

empty
greedy

Order

-2180

-2170

-2160

-2150

-2140

-2130

-2120

0 2000 4000 6000 8000 10000 12000

sc
or

e

iteration

random
-8450

-8445

-8440

-8435

-8430

-8425

-8420

-8415

-8410

-8405

-8400

0 10000 20000 30000 40000 50000 60000

sc
or

e

iteration

random
greedy

-16260

-16255

-16250

-16245

-16240

-16235

-16230

-16225

-16220

0 10000 20000 30000 40000 50000 60000

sc
or

e

iteration

random
greedy

100 instances 500 instances 1000 instances

Figure 3: Plots of the progression of the MCMC runs. Each graph shows plots of 6 independent runs over Alarm with either
100, 500, and 1000 samples. The graph plot the score (

������� ������� � ��	 ������	 	
or
������� ������� � � 	 ��� �) of the “current”

candidate (� -axis) for different iterations (
�

-axis) of the MCMC sampler. In each plot, three of the runs are seeded with the
network found by greedy hill climbing search over network structures. The other three runs are seed either by the empty
network in the case of the structure-MCMC or a random ordering in the case of ordering-MCMC.

Bayesian averaging over networks. We experimented on
the nine-variable “flare” dataset. We ran the MCMC sam-
pler with a burn-in period of 1,000 steps and then sampled
every 100 steps; we experimented with collecting 5, 20,
and 50 samples. (We note that these parameters are prob-
ably excessive, but they ensure that we are sampling very
close the stationary probability of the process.) The results
are shown in Figure 2. As we can see, the estimates are very
robust. In fact, for Markov features even a sample of 5 or-
derings gives a surprisingly decent estimate. This is due to
the fact that a single sample of an ordering contains infor-
mation about exponentially many possible structures. For
edges we obviously need more samples, as edges that are
not in the direction of the ordering necessarily have proba-
bility 0. With 20 and 50 samples we see a very close corre-
lation between the MCMC estimate and the exact compu-
tation for both types of features.

We then considered larger datasets, where exhaustive
enumeration is not an option. For this purpose we used
synthetic data generated from the Alarm BN [1], a network
with 37 nodes. Here, our computational tricks are neces-
sary. We used the following settings:

�
(max. number of

parents in a family)
�	�

;
� �

(max. number of potential
parents)

� 	 � ; � � (number of families cached)
��
 � � � ;

and � (difference in score required in pruning)
� � � . Note

that � � � � corresponds to a difference of 	 �� in the pos-
terior probability of the families. We note that different
families have huge differences in score, so a difference of	 ��� in the posterior probability is not uncommon.

Here, our primary goal was the comparison of structure-
MCMC and ordering-MCMC. For the structure MCMC,
we used a burn in of 100,000 iterations and then sampled
every 25,000 iterations. For the order MCMC, we used a
burn in of 10,000 iterations and then sampled every 2,500
iterations. In both methods we collected a total of 50 sam-
ples per run. One phenomenon that was quite clear was that
ordering-MCMC runs mixed much faster. That is, after a
small number of iterations, these runs reached a “plateau”
where successive samples had comparable scores. Runs
started in different places (including random ordering and
orderings seeded from the results of a greedy-search model
selection) rapidly reached the same plateau. On the other
hand, MCMC runs over network structures reached very
different levels of scores, even though they were run for
much larger number of iterations. Figure 3 illustrates this
phenomenon for examples of alarm with 100, 500, and
1000 instances. Note the substantial difference in scale be-
tween the two sets of graphs.

In the case of 100 instances, both MCMC samplers
seemed to mix. The structure based sampler mixes after
about 20,000–30,000 iterations while the ordering based
sampler mixes after about 1,000–2,000 iterations. On the
other hand, when we examine 500 samples, the ordering-
MCMC converges to a high-scoring plateau, which we be-
lieve is the stationary distribution, within 10,000 iterations.
By contrast, different runs of the structure-MCMC stayed
in very different regions of the in the first 500,000 itera-
tions. The situation is even worse in the case of 1,000 in-

50 instances 500 instances

empty vs. empty empty vs. empty greedy vs. greedy greedy vs. empty

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 4: Scatter plots that compare posterior probability of Markov features on the Alarm dataset, as determined by
different runs of structure-MCMC. Each point corresponds to a single Markov feature; its

�
and � coordinates denote the

posterior estimated by the two compared runs. The position of points is slightly randomly perturbed to visualize clusters
of points in the same position.

stances. In this case the structure based MCMC sampler
that starts from an empty network does not reach the level
of score achieved by the runs starting from the structure
found by greedy hill climbing search. Moreover, these lat-
ter runs seem to fluctuate around the score of the initial
seed. Note that runs show differences of 100 – 500 bits.
Thus, the sub-optimal runs sample from networks that are
at least 	 ��� � less probable!

This phenomenon has two explanations. Either the seed
structure is the global optimum and the sampler is sampling
from the posterior distribution, which is “centered” around
the optimum; or the sampler is stuck in a local “hill” in the
space of structures from which it cannot escape. This lat-
ter hypothesis is supported by the fact that runs starting at
other structures (e.g., the empty network) take a very long
time to reach similar level of scores, indicating that there
is a very different part of the space on which stationary be-
havior is reached.

We can provide further support for this second hypothe-
sis by examining the posterior computed for different fea-
tures in different runs. Figure 4 compares the posterior
probability of Markov features assigned by different runs
of structure-MCMC. Although different runs give a similar
probability estimate to most structural features, there are
several features on which they differ radically. In particu-
lar, there are features that are assigned probability close to
1 by samples from one run and probability close to 0 by
samples from the other. While this behavior is less com-
mon in the runs seeded with the greedy structure, it occurs
even there. This suggests that each of these runs (even runs
that start at the same place) gets trapped in a different local
neighborhood in the structure space.

By contrast, comparison of the predictions of different
runs of the order based MCMC sampler are tightly corre-
lated. Figure 5 compares two runs, one starting from an
ordering consistent with the greedy structure and the other
from a random order. We can see that the predictions are
very similar, both for the small dataset and the larger one.
This observation reaffirms our claim that these different

50 instances 500 instances

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 5: Scatter plots that compare posterior probability
of Markov features on the Alarm domain as determined by
different runs of ordering-MCMC. Each point corresponds
to a single Markov feature; its

�
and � coordinates denote

the posterior estimated by the greedy seeded run and a ran-
dom seeded run respectively.

runs are indeed sampling from similar distributions. That
is, they are sampling from the true posterior.

We believe that the difference in mixing rate is due to the
smoother posterior landscape of the space of orderings. In
the space of networks, even a small perturbation to a net-
work can lead to a huge difference in score. By contrast, the
score of an ordering is a lot less sensitive to slight pertur-
bations. For one, the score of each ordering is an aggregate
of the scores of a very large space of structures; hence, dif-
ferences in scores of individual networks can often cancel
out. Furthermore, for most orderings, we are likely to find
a consistent structure which is not too bad a fit to the data;
hence, an ordering is unlikely to be uniformly horrible.

The disparity in mixing rates is more pronounced for
larger datasets. The reason is quite clear: as the amount
of data grows, the posterior landscape becomes “sharper”
since the effect of a single change on the score is ampli-
fied across many samples. As we discussed above, if our
dataset is large enough, model selection is often a good
approximation to model averaging. (Although this is not
quite the case for 1000-instance Alarm.) Conversely, if

we consider Alarm with only 100 samples, or the (fairly
small) genetics data set, graphs such as Figure 3 indicate
that structure-MCMC does eventually converge (although
still more slowly than ordering-MCMC).

We note that, computationally, structure-MCMC is faster
than ordering-MCMC. In our current implementation, gen-
erating a successor network is about an order of magnitude
faster than generating a successor ordering. We therefore
designed the runs in Figure 3 to take roughly the same
amount of computation time. Thus, even for the same
amount of computation, ordering-MCMC mixes faster.

When both ordering-MCMC and structure-MCMC mix,
it is possible to compare their estimates. In Figure 6 we see
such comparisons for Alarm. We see that, in general, the
estimates of the two methods are not too far apart, although
the posterior estimate of the structure-MCMC is usually
larger. This difference between the two approaches raises
the obvious question: which estimate is better? Clearly,
we cannot compute the exact posterior for a domain of this
size, so we cannot answer this question exactly. However,
we can test whether the posteriors computed by the dif-
ferent methods can reconstruct features of the generating
model. To do so, we label Markov features in the Alarm
domain as positive if they appear in the generating network
and negative if they do not. We then use our posterior to
try and distinguish “true” features from “false” ones: we
pick a threshold

�
, and predict that the feature

�
is “true”

if
��� � 	�� �

. Clearly, as we vary the the value of
�
, we

will get different sets of features. At each threshold value
we can have two types of errors: false positives — pos-
itive features that are misclassified as negative, and false
negatives — negative features that are classified as posi-
tive. Different values of

�
achieve different tradeoffs be-

tween these two type of errors. Thus, for each method we
can plot the tradeoff curve between the two types of errors.
Note that, in most applications of structure discovery, we
care more about false positives than about false negatives.
For example, in our biological application, false negatives
are only to be expected — it is unrealistic to expect that
we would detect all causal connections based on our lim-
ited data. However, false positives correspond to hypothe-
sizing important biological connections spuriously. Thus,
our main concern is with the left-hand-side of the tradeoff
curve, the part where we have a small number of false pos-
itives. Within that region, we want to achieve the smallest
possible number of false negatives.

We computed such tradeoff curves for Alarm data set with
100 and 1000 instances for two types of features: Markov
features and Path features. The latter represent relations
of the form “there is a directed path from � to � ” in
the PDAG of the network structure. Directed paths in the
PDAG are very meaningful: if we assume no hidden vari-
ables, they correspond to a situation where � causes � . As
discussed in Section 3, we cannot provide a closed form ex-
pression for the posterior of such a feature given an order-
ing. However, we can sample networks from the ordering,
and estimate the feature relative to those. In our case, (we
sampled 10 networks from each order). We also compared

50 instances 500 instances

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 6: Scatter plots that compare posterior probability
of Markov features on the Alarm domain as determined the
two different MCMC samplers. Each point corresponds to
a single Markov feature; its

�
and � coordinates denote the

posterior estimated by the greedy seeded run of ordering-
MCMC and structure-MCMC, respectively.

to the tradeoff curve of the non-parametric Bootstrap ap-
proach of [5], a non-Bayesian simulation approach to esti-
mate “confidence” in features.

Figure 7 displays these tradeoff curves. As we can see,
ordering-MCMC dominates in most of these cases except
for one (Path features with 100 instances). In particular, for
�

larger than � �
 , ordering-MCMC makes no false positive
errors for Markov features on the 1000-instance data set.
We believe that features it misses are due to weak interac-
tions in the network that cannot be reliably learned from
such a small data set.

6 Discussion and future work

In this section, we presented a new approach for estimat-
ing the true Bayesian posterior probability of certain struc-
tural network features. Our approach is based on the use
of MCMC sampling, but over orderings of network vari-
ables rather than directly over network structures. Given
an ordering sampled from the Markov chain, we can com-
pute the probability of edge and Markov-blanket structural
features using an elegant closed form solution. For other
features, we can easily sample networks from the order-
ing, and estimate the probability of that feature from those
samples. We have shown that the resulting Markov chain
mixes substantially faster than MCMC over structures, and
therefore gives robust high-quality estimates in the prob-
ability of these features. By contrast, the results of stan-
dard MCMC over structures are often unreliable, as they
are highly dependent on the region of the space to which
the Markov chain process happens to gravitate.

We believe that this approach can be extended to deal
with data sets where some of the data is missing, by ex-
tending the MCMC over orderings with MCMC over miss-
ing values, allowing us to average over both. If success-
ful, we can use this combined MCMC algorithm for do-
ing full Bayesian model averaging for prediction tasks as
well. Finally, we plan to apply this algorithm in our biol-
ogy domain, in order to try and understand the underlying

Markov features

0

10

20

30

40

50

0 10 20 30 40 50

F
al

se
 N

eg
at

iv
es

False Positives

Bootstrap
Order

Structure

0

10

20

30

40

50

0 10 20 30 40 50

F
al

se
 N

eg
at

iv
es

False Positives

Bootstrap
Order

Structure

0

10

20

30

40

50

0 10 20 30 40 50

F
al

se
 N

eg
at

iv
es

False Positives

Bootstrap
Order

Structure

Path features

0

50

100

150

200

0 200 400 600 800 1000

F
al

se
 N

eg
at

iv
es

False Positives

Bootstrap
Order

Structure

0

50

100

150

200

0 200 400 600 800 1000

F
al

se
 N

eg
at

iv
es

False Positives

Bootstrap
Order

Structure

0

50

100

150

200

0 100 200 300 400 500 600 700 800

F
al

se
 N

eg
at

iv
es

False Positives

Bootstrap
Order

Structure

100 instances 500 instances 1000 instances

Figure 7: Classification tradeoff curves for different methods. The
�

-axis and the � -axis denote false positive and false
negative errors, respectively. The curve is achieved by different threshold values in the range

 � � ��� . Each curve corresponds
to the prediction based on MCMC simulation with 50 samples collected every 200 and 1000 iterations in order and structure
MCMC, respectively.

structure of gene expression.

Acknowledgments The authors thank Yoram Singer for
useful discussions. This work was supported by ARO grant
DAAH04-96-1-0341 under the MURI program “Integrated
Approach to Intelligent Systems”, and by DARPA’s Infor-
mation Assurance program under subcontract to SRI Inter-
national. Nir Friedman was supported through the generos-
ity of the Michael Sacher Trust and Sherman Senior Lec-
tureship. The experiments reported here were performed
on computers funded by an ISF basic equipment grant.

References
[1] I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper.

The ALARM monitoring system: A case study with two
probabilistic inference techniques for belief networks. In
Proc. 2’nd European Conf. on AI and Medicine. Springer-
Verlag, Berlin, 1989.

[2] W. Buntine. Theory refinement on Bayesian networks. In
UAI, pp. 52–60, 1991.

[3] W. L. Buntine. A guide to the literature on learning prob-
abilistic networks from data. IEEE Trans. Knowledge and
Data Engineering, 8:195–210, 1996.

[4] G. F. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine
Learning, 9:309–347, 1992.

[5] N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis
with Bayesian networks: A bootstrap approach. In UAI,
pp. 206–215, 1999.

[6] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using
Bayesian networks to analyze expression data. In RECOMB,
pp. 127–135, 2000.

[7] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov
Chain Monte Carlo Methods in Practice. CRC Press, 1996.

[8] D. Heckerman. A tutorial on learning with Bayesian net-
works. In M. I. Jordan, editor, Learning in Graphical Mod-
els, 1998.

[9] D. Heckerman and D. Geiger. Learning Bayesian networks:
a unification for discrete and Gaussian domains. In UAI,
pp. 274–284, 1995.

[10] D. Heckerman, D. Geiger, and D. M. Chickering. Learn-
ing Bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20:197–243, 1995.

[11] D. Heckerman, C. Meek, and G. Cooper. A Bayesian ap-
proach to causal discovery. MSR-TR-97-05, Microsoft Re-
search, 1997.

[12] E. Lander. Array of hope. Nature Gen., 21, 1999.
[13] D. Madigan and E.E. Raftery. Model selection and account-

ing for model uncertainty in graphical models using Oc-
cam’s window. J. Am. Stat. Assoc., 89:1535–1546, 1994.

[14] D. Madigan and J. York. Bayesian graphical models for
discrete data. Inter. Stat. Rev., 63:215–232, 1995.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, and E. Teller. Equation of state calculation by fast
computing machines. J. Chemical Physics, 21:1087–1092,
1953.

[16] P. M. Murphy and D. W. Aha. UCI repository of machine
learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html,
1995.

[17] F.C. Pereira and Y. Singer. An efficient extension to mix-
ture techniques for prediction and decision trees. Machine
Learning, 36(3):183–199, 1999.

