CIS 530: Introduction to Artificial Intelligence CIS 730: Artificial Intelligence

Fall 2021

Hours: 3 hours, additional 3-hour project options available (CIS 690, CIS 798, or CIS 890)

Prerequisite: CIS 300, Data Structures and Algorithms, CIS 501, Software Architecture (or equivalent programming background)

Textbook: Russell, S. J., & Norvig, P. (2020) *Artificial Intelligence: A Modern Approach*, 4th edition. Englewood Cliffs, NJ: Prentice-Hall. ISBN-13: 978-0134610993. See: <u>http://aima.cs.berkeley.edu</u>

Venue: MWF 09:30 – 10:20 U.S. Central Time, 0093 Engineering Hall (CIS 530 A: Reference #10777; CIS 730 A: Reference #10790) & online via Global Campus (CIS 730 ZA: Reference #17869; CIS 730 ZB for Data Analytics certificate)

Instructor: William H. Hsu, Department of Computer Science

Office: 2178 Engineering Hall (DUE) URL: <u>http://www.cs.ksu.edu/~bhsu</u> TA: Talha Zaidi TA Email: <u>tza</u>idi@ksu.edu Google Voice (office/home/cell): +1 785 236 8247 E-mail: <u>bhsu@ksu.edu</u>

TA Hours: 14:00 – 15:30 Wed, 10:00 – 11:00 Thu at DUE 1119 Instructional alias: CIS730TA-L@listserv.ksu.edu

Office hours: 10:30 – 11:30 Mon, 13:00-14:00 Tue, 11:30-12:30 Wed, 13:30,-14:30 Fri or by appointment K-State Canvas page redirector: https://bit.ly/kstate-aiclass-2021 (<a href="https://bit.ly/kstate-aiclass-202

Course Description

This course provides fundamental background in intelligent systems for graduate and advanced undergraduate students. Topics to be covered include intelligent agents, problem-solving, uninformed and informed (heuristic) search, logical and probabilistic knowledge representation, logical and probabilistic inference, foundations of classical and universal planning, essentials of machine learning, neural networks, and genetic and evolutionary computation. A survey of computer vision and natural language processing (NLP) problems and techniques is also presented. Applications to practical design and development of intelligent systems will be emphasized, leading to individual projects on current topics and applications in AI.

Component			
Exams (no proctor	Midterm exam	20%	45%
required)	1 final exam	25%	
Homework and	Highest 7 scores of	149((29(apph) 24%	
class participation	4 problem sets, 6 machine problems	14% (2% each)	
	10 Labs	10% (1% each)	
Term project	Plan writeup / intermediate interview	4% (2% each)	25%
(one of five topics)	Merit (orig. / func. / effort / compl)	16% (4% each)	
	Report	3%	
	Presentation & Recording	2%	
Class participation	Attendance / Using Global Campus	1%	6%
	Discussions (TopHat / Global Campus)	2%	
	Quiz questions (TopHat / Global Campus)	3%	

Course Requirements

Selected reading (on reserve in K-State CIS Library):

- Poole, D. & Mackworth, A. (2017). Artificial Intelligence: Foundations of Computational Agents, 2nd edition. Cambridge, UK: Cambridge University Press.
- Luger, G. F (2009). Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th ed. Reading, MA: Addison-Wesley.
- Rich, E., & Knight, K. (1990). Artificial Intelligence, 2nd ed. New York, NY: McGraw-Hill, 1990.

Additional bibliography (excerpted in course notes and handouts):

- Goodfellow, I., Bengio, Y., Courville, A., & Bach, F., (2016). *Deep Learning*. Cambridge, MA: MIT Press.
- Nilsson, N. J. & Genesereth, M. R. (1987). Logical Foundations of Artificial Intelligence. San Mateo, CA: Morgan-Kaufmann.

Course Calendar

Lectures	Date	Торіс	Reading in R&N 4 ^e
0	Mon 23 Aug 2021	Course overview: AI, intelligent agents	Preface, Chapter 1
1	Wed 25 Aug 2021	Problem solving, rationality, search intro	2.1 – 2.5, 3.1
2	Fri 27 Aug 2021	Uninformed search: DFS, BFS, DLS, B&B	3.2 – 3.4
3	Mon 30 Aug 2021	IDDFS, SMB; Informed search: A/A*	3.5.1 – 3.5.2
4	Wed 01 Sep 2021	Informed: A*, IDA/SMA, heuristics	3.5.2 – 3.5.7, proj. topics
5	Fri 03 Sep 2021	Informed: continuous gradients, SA, GA	4 (esp. 4.1 – 4.2)
6	Wed 08 Sep 2021	Informed: hill-climbing, beam, greedy	5.1 – 5.3
7	Fri 10 Sep 2021	Games: intro, minimax, static evaluation	5.3 – 5.4; plan drafts due
8	Mon 13 Sep 2021	Games: alpha-beta, expectiminimax	6.1 – 6.2; project plans
9	Wed 15 Sep 2021	Constraint Sat. Problems; Al apps 1 of 3	6.3 – 6.6
10	Fri 17 Sep 2021	CSP: backtracking, FC/CP, arc consistency	7.1 – 7.4; plan revs. due
11	Mon 20 Sep 2021	Logical agents, propositional logic in Al	7.5 – 7.8
12	Wed 22 Sep 2021	Fwd./backward chaining, resolution, Rete	8.1 – 8.2
13	Fri 24 Sep 2021	First-Order Logic: syntax, semantics	8.3 - 8.4. 9.1
14	Mon 27 Sep 2021	FOL: inference, unification, proofs	9.2 - 9.4
15	Wed 29 Sep 2021	FOL: theorem proving, clausal form	9.5
16	Fri 01 Oct 2021	FOL; resolution. Prolog: Al apps 2 of 3	9
17	Mon 04 Oct 2021	Rules expert systems: Knowledge Eng	10
18	Wed 06 Oct 2021	Decidability: planning: intro_classical	11
19	Fri 08 Oct 2021	Intro to description logic ontologies	121 - 122
20	Mon 11 Oct 2021	Planning: overview classical	221 - 223 234 - 235
21	Wed 13 Oct 2021	Plans: graph HTNs coercion conditional	12.3
	100 10 000 2021	Midterm Exam (Online / Open-Textbook)	1 - 3 4 1 - 4 3 5 - 10 3
22	Fri 15 Oct 2021	Plans: monitoring/replanning, lifelong	12: interim reports
23	Mon 18 Oct 2021	Uncertain reasoning: fuzzy logic, probability	12: interviews: Vision 1
24	Wed 20 Oct 2021	Uncertainty: Bayes nets: Al apps 3 of 3	13. P&M 8
25	Fri 22 Oct 2021	Markov Decision Processes & Reinf, Learn.	17. P&M 8
26	Mon 25 Oct 2021	Machine Learning: intro taxonomy	191 – 192
27	Wed 27 Oct 2021	ML: supervised, classification	19.2
28	Fri 29 Oct 2021	ML: decis trees linear/logistic regression	19.3 19.6
29	Mon 01 Nov 2021	ML: neural network foundations, perceptron	21 1 - 21 2
30	Wed 03 Nov 2021	ML: multi-laver perceptrons, gradients	21 2 21 4
31	Fri 05 Nov 2021	Deep Learning basics: convolution sparsity	21.3 - 21.5
32	Mon 08 Nov 2021	M : support vector machines	19.7
33	Wed 10 Nov 2021	DL: activation func regression Comp Vis	21 2-5 Stanford CV lect
34	Fri 12 Nov 2021	M : unsupervised (hier & partitional clust.)	19.7.1. 20.3. P&M 10
35	Mon 15 Nov 2021	DI : natural language models	24
36	Wed 17 Nov 2021	M scikit-learn classification rear clust	sklearn handout & docs
37	Fri 19 Nov 2021	ML: Beinforcement Learning - O-learning	221 - 223 P&M 9
38	Mon 29 Nov 2021	DI: deep RI - deep O nets model-based	DRL lecture (Kathpalia)
39	Wed 01 Dec 2021	DL: deep RL – actor-critic policy gradient	22.4 - 22.5 Vision 2
40	Fri 03 Dec 2021	Ethics of artificial intelligence	26.273 - 274
41	Mon 06 Dec 2021	Review: special topic (philosophy of Al)	1-11 12-14 19 22-27
42	Wed 08 Dec 2021	Blitz talks, project highlights, presentations	
42		EINAL (Online $/13 - 17$ Dec 2021)	1_11 12_14 19 22_27
	1		1-11, 12-14, 10, 22-21

Lightly-shaded entries denote due dates of written problem sets: Lecture 5, 10, 13, 19. Heavily-shaded entries denote due dates of machine problems (Programming HW): 7, 16, 24, 27, 30, 33 Aqua-shaded entries denote lab days (usually every other Wednesday): 2, 4, 8, 11, 14, 17, 25, 28, 31, 34 Green-highlighted entries denote project milestones and Yellow-highlighted entries denote interview dates.

The above due dates are for on-campus students. Global Campus (distance) student due dates for home works and projects are <u>48 hours later</u>, by default.

Green font: exam review day; blue font: exam day; red font: post-exam / model solution release

Project reports are due on Fri 17 Dec 2021, with final interviews starting on Fri 03 Dec 2021.