CIS 798: Programming Techniques for Data Science and Analytics

Fall 2018

Hours: 3 hours; extended course project option (CIS 597/598, 690) available

Prerequisite: CIS 200 (Fundamentals of Programming) or CIS 209 (C Programming for Engineers) or instructor permission; programming background (Python, R, or Matlab for analytics) recommended Textbook: Drabas, T., & Lee, D. (2017). Learning PySpark. Birmingham, UK: Packt Publishing. URL: http://bit.ly/learning-pyspark-mapt

Venue: MWF 12:30 – 13:20 U.S. Central Time, 1116 Engineering Hall (Reference #15132, CIS 490: #15130)
Instructor: William H. Hsu, Department of Computer Science (http://www.cs.ksu.edu/~bhsu, bhsu@ksu.edu)
Office: 2164 Engineering Hall (DUE)
Google Voice (office/home/cell): +1 785 236 8247

TA: CS graduate TA (TBD), 1119 DUE

Schedule: http://www.kddresearch.org/page/53
Instructional alias: bigdataclassta@listserv.ksu.edu
Research & teaching wiki: http://www.kddresearch.org
Office hours: 10:30 – 11:30, 15:30 – 16:30 Mon, Wed; 08:00 – 09:00 Fri; 09:00 – 10:00 Tue; 18:30 Thu for

distance students; by appointment

Web page: http://bit.ly/kstate-datascience-class (public)

MediaSite lectures: Linked from both K-State Canvas (official) and mirror (public)

Course Description

This is an intermediate (upper undergraduate / beginning graduate-level) course on programming techniques for data science, including large (terascale) data sets and complex, heterogeneous data from various domains. It is intended for students who have had at least one introductory programming course and know or are prepared to learn the Python programming language along with requisite software libraries. These include NumPy, SciPy, PySpark, and one or more of: scikitlearn, PyTorch, and TensorFlow. Prior experience with technical computing (numerical and statistical computations) using Matlab/Octave or R is a plus, but no additional background is assumed. The course will survey programming concepts that underlie MapReduce, Apache Hadoop and Spark, and specific tools such as Apache Hive, Storm, and Flink. It will give a practical hands-on introduction to programming tools for statistical computing in big data environments and methods for evaluation and validation of results. NoSQL, search tools, graph databases, and visualization will be presented in the context of real-world problems involving data integration and transformation. Students will be given full-scale data sets and problems to work with and may bring data and problems to work on from other disciplines.

Recommended text (on reserve in K-State Library, excerpts on Canvas)

Hwang, K. (2017). Cloud Computing for Machine Learning and Cognitive Applications. Cambridge, MA, USA: MIT Press. URL: http://bit.ly/cloud-computing-mit

Hastie, T., Tibshirani, R. & Friedman, J. (2016). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition.* URL: http://www.springer.com/qp/book/9780387848570

Scott, J. A. (2015). *Getting Started with Apache Spark: From Inception to Production.* San Jose, CA, USA: MapR Technologies, Inc. URL: https://mapr.com/ebooks/spark/

(Additional bibliography on text analytics, deep learning, other machine learning in online materials)

Course Requirements

Component	Components	Grade Value	Total Value	
	2 online hour exams	20% (10% each)		
Exams and quizzes	1 online final exam	20%	45%	
	5 of 6 online quizzes	5% (1% each)		
Homework	5 of 6 programs	10% (2% each)	20%	
	5 of 6 exercise sets (written)	10% (2% each)	20 /0	
	Planning/design, interview	8%		
Term project	Intermediate milestone	8%	25%	
renn project	Implementation, report	8%	23%	
	Peer review	1%		
	Forum participation	6%		
Class participation	Answering questions/discussion	2%	10%	
	10 of 15 labs	2%		

Course Calendar, Syllabus, and Readings (textbook chapters unless otherwise indicated)

Lecture	Date	Topic	Reading (Before Class)
0	Mon 20 Aug 2018	MapReduce/Hadoop 1 of 3; Overview	Missive; Preface, (Ch.) 1
1	Wed 22 Aug 2018	MapReduce/Hadoop 2 of 3: BYOD	2; 1-2 Lin; BigTable Article
2	Fri 24 Aug 2018	MapReduce/Hadoop 3 of 3: Tools	3 Lin; Stats Handout
3	Mon 27 Aug 2018	Python, Amazon Web Services	Python Handout
4	Wed 29 Aug 2018	Python Streaming; Full Scala/sbt Intro	Streaming Handout
5	Fri 31 Aug 2018	Introduction to Queries & SQL; Scalding	SQL Handout; 5
6	Wed 05 Sep 2018	Pig & Hive 1 of 3: Queries; Google Cloud	Pig & Hive Handouts; 1
7	Fri 07 Sep 2018	Pig & Hive 2 of 3: Exercises; Azure	Pig & Hive Handouts
8	Mon 10 Sep 2018	Pig & Hive 3 of 3; More Scala/sbt	FP Basics Handout
9	Wed 12 Sep 2018	PySpark 1 of 3: Overview; IBM Bluemix	PySpark Handout
10	Fri 14 Sep 2018	PySpark 2 of 3; Exam 1 Review	PySpark Handouts
11	Mon 17 Sep 2018	PySpark 3 of 3; AWS Deployment	PySpark Handouts
12	Wed 19 Sep 2018	Project Topics Review	Projects Handout
13	Fri 21 Sep 2018	Exam 1; Flink	Avro Handout
14	Mon 24 Sep 2018	MR Design Patterns 1 of 3: Basics	UMAP Papers; 2
15	Wed 26 Sep 2018	MR Design Patterns 2 of 3: Exercise, Drill	RecSys Survey, Papers; 3
16	Fri 28 Sep 2018	MR Design Patterns 3 of 3: Apps	Cloudera Handout; 4
17	Mon 01 Oct 2018	NoSQL 1 of 5: Intro, CAP, Sharding	NoSQL Handout; 2-3
18	Wed 03 Oct 2018	NoSQL 2 of 5: Key-Value Stores	Key-Value Handout; 4
19	Fri 05 Oct 2018	NoSQL 3 of 5: Cassandra (Columnar)	Cassandra Handout; 5
20	Mon 08 Oct 2018	NoSQL 4 of 5: MongoDB (Document)	6; Lin 4; Mongo Handout
21	Wed 10 Oct 2018	NoSQL 5 of 5: Neo4j (Graph)	7; Lin 4; Graph Handout
22	Fri 12 Oct 2018	MR Synopsis; Exam 2 Review	8; Lin 5, ETL Handout
23	Mon 15 Oct 2018	Data Mining 1 of 3: Machine Learning	Mahout Handout
24	Wed 17 Oct 2018	Data Mining 2 of 3: sklearn/MLLib, Mahout	Learning Handout
25 26	Fri 19 Oct 2018	Data Mining 3 of 3: KDD; Exam 2 Search 1 of 5: Indexing	KDD, CRM/BI Handouts
27	Mon 22 Oct 2018 Wed 24 Oct 2018	Search 1 of 5. Indexing Search 2 of 5: PageRank	Search Handout; Lin 4 3; Lin 6; Search Handout
28	Fri 26 Oct 2018	Search 3 of 5: TFIDF, Text Analytics	Text Analytics Handout
29	Mon 29 Oct 2018	Search 4 of 5: Solr	Solr Handouts
30	Wed 31 Oct 2018		ElasticSearch Handout
		Search 5 of 5: ElasticSearch Mesos, Lambda Architecture	
31 32	Fri 02 Nov 2018 Mon 05 Nov 2018	Synopsis, Final Review	Shard Basics Handout NoSQL Handout
33	Wed 07 Nov 2018	KVP vs. Columnar DBs	NoSQL Handout
34	Fri 09 Nov 2018	Graph Databases 1 of 3 :More Neo4j	Graph & Neo4j Handouts
35	Mon 12 Nov 2018	Graph Databases 2 of 3 :Examples	Neo4j Handout
36	Wed 14 Nov 2017	Graph Databases 2 of 3 :Examples Graph Databases 3 of 3 :Applications	Graph & Neo4j Handouts
37	Fri 16 Nov 2018	Statistics & Analytics 1 of 3: Descriptive	Lin 5; Stats Handout
38	Mon 26 Nov 2018	Statistics & Analytics 2 of 3: Big Data	Stats Handout
39	Wed 28 Nov 2018	Statistics & Analytics 2 of 3: Info Vis	Visualization Handout
	Fri 30 Nov 2018	Final Projects & Peer Review 1	N/A (Student Handouts)
	Mon 03 Dec 2018	Final Projects & Peer Review 2	N/A (Student Handouts)
40	Wed 05 Dec 2018	Performance & Scalability Issues	Lin 7; HPC Handout
41	Fri 07 Dec 2018	Advanced Big Data Analytics Topics	Advanced Topics Handout
· ·	0. 200 2010	PROJECT SUBMISSIONS DUE	- I - I - I - I - I - I - I - I - I - I
			1

Lightly-shaded entries (with bold text) denote the due date of a written problem set.

Heavily-shaded entries denote the due date of a machine problem (programming assignment).

Green-shaded entries denote the date of a lab (distance students may participate online that week).

Green bold-faced text denotes the date of an exam preparation review.

Red bold-faced text denotes the date of an exam (distance students may use online proctoring that week), Blue bold-faced text denotes the date of a post-exam (model solution) review.

Project proposals are due on the day of Lecture 23. Interim project interviews will be held right after the second hour **exam**.

The highlighted date is the due date of the draft project report and demo, with interviews and presentations to be held the last two weeks of class.