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Abstract: This paper addresses the task of extracting free-text sections from scientific PDF documents, and specifically 

the problem of formatting disparity among different publications, by analysing their metadata. For the purpose 

of extracting procedural knowledge in the form of recipes from papers, and for the application domain of 

nanomaterial synthesis, we present Metadata-Analytic Text Extractor and Section Classifier (MATESC), a 

heuristic rule-based pattern analysis system for text extraction and section classification from scientific 

literature. MATESC extracts text spans and uses metadata features such as spatial layout location, font type, 

and font size to create grouped blocks of text and classify them into groups and subgroups based on rules that 

characterize specific paper sections. The main purpose of our tool is to facilitate information and semantic 

knowledge extraction across different domain topics and journal formats. We measure the accuracy of 

MATESC using string matching algorithms to compute alignment costs between each section extracted by 

our tool and manually-extracted sections. To test its transferability across domains, we measure its accuracy 

on papers that are relevant to the papers that were used to determine our rule-based methodology and also on 

random papers crawled from the web. In the future, we will use natural language processing to improve 

paragraph grouping and classification.

1 INTRODUCTION 

MATESC is a metadata-analytic text extractor and 

section classifier that uses metadata features and 

heuristics to classify examined text elements that are 

extracted from Portable Document Format (PDF) 

scientific publications into titled sections and 

subsections. Examples of metadata features include 

font size, font type, and spatial location of elements 

that can in turn be localized using computer vision 

and pattern recognition algorithms. MATESC was 

designed to be a generalized extractor whose 

functionality is transferable across different domain 

topics and journal publishers. The purpose of section 

classification in our extraction task is to address the 

problem of IR-based and knowledge-based question 

answering (QA), which requires the extraction of 

passages directly from documents, guided by the text 

of the user question, to formulate a structured 

response (Jurafsky and Martin 2009).  

Given the potentially enormous amount of text 

and information that can be retrieved from a 

document, section extraction for QA tasks entails 

narrowing down search sections, controlling a user 

interface to focus on specific sections and passages of 

interest, and reducing costs of extracting answers for 

specific predetermined user queries or search-based 

QA. In fields such as material science, QA tasks 

require the extraction of domain-specific information, 

such as recipes for synthesizing a material of interest 

(Kim et al. 2017). These are stepwise procedures 

consisting of named compounds and operations.  Our 

goal is to use MATESC to obtain specific text 

sections, such as “Materials and Methodology”, that 

can be annotated to obtain training data for machine 

learning algorithms, resulting in models for natural 

language processing such as snippet and passage 

extraction, named entity recognition (NER), set 

expansion, relationship extraction, chunk parsing, 

and semantic role labelling. This in turn allows new 

documents to be tagged with mark-up for snippets or 
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passages, named entities, chemical terms and the 

acronyms and synonyms, “verbs” denoting unit 

operations or sub-procedures, unknown terms in the 

form of noun phrases, and recognizable roles of 

recipe ingredients. The end-to-end function of this 

cognitive computing pipeline uses text and 

knowledge features to drive a process based on semi-

supervised learning to produce material synthesis 

recipes. 

This paper presents a rule-based algorithm used to 

extract section titles, beyond header information, and 

group lines of text in their corresponding paragraphs 

while placing those paragraphs in their correct 

sequential order. To measure the effectiveness of our 

algorithm in section classification and ordering, we 

developed a user interface to manually extract section 

titles and their content from 300 documents to create 

our ground truth. With the purpose of creating a 

transferable tool across different domain topics, we 

compared efficiency measures between the domain-

topic used to develop MATESC, material synthesis, 

and other random domains. Half of the documents 

were relevant to material synthesis determined by 

field professionals, and the other half were randomly 

crawled from the web using the open-source web-

crawling platform, Scrapy (Myers & McGuffee 

2015). The length of the longest common 

subsequence (LLCS) (Paterson & Dančík 1994),, and 

the length of the longest common substring, 

(LLCSTR) (Crochemore et al. 2015) were measured 

to determine similarity, precision, recall and accuracy 

between the manually extracted ground truth and the 

sections extracted by MATESC. For ordering of 

section measurements, we use different variations of 

k, which determines comparison of sections only if 

they k indices apart.  

 

1.1 Background 

 
QA tasks rely heavily on the amount of information 

publicly available in the world wide web (Jurafsky 

and Martin 2009). With the tremendous growth of 

scientific documents publicly available, the disparity 

among different domain topics and journals in the 

same domain increase as well. Although there seems 

to be a general guideline for scientific papers, there 

are various format differences that bring challenges in 

handling this disparity to create a generalized tool. In 

some documents, section subtitles are not included, 

making it difficult for natural language processing to 

parse header data.  

To address format disparity challenges, metadata 

extraction tools have been developed for specific 

entities extraction, specifically headers (e.g. title, 

authors, keywords, abstract) and bibliographic data. 

Apache PDFBox (Anon n.d.), PDFLib TET (Anon 

n.d.) and Poppler (Noonburg n.d.) extract text and 

attributes of PDF documents. Open-source header 

and bibliographic data parsers include GROBID 

(Lopez 2009) , ParsCit (Prasad et al. 2018) and 

SVMHeaderParse (Han et al. 2003) For table and 

figures extraction, and PDFFigures (Clark and 

Divvala 2016) have been developed for general 

academic publications. To encapsulate all of these 

various open source tools into one framework, 

PDFMEF (Wu et al. 2015) brings users a 

customizable and scalable tool to bring the best 

capabilities of each tool into one tool. Extraction of 

first-page header information is useful for clustering 

documents and identifying duplicates, where a 

combination of authors and title are assumed to be 

unique to each document. For structured recipe 

extraction, sections beyond the first page and 

bibliographic data are necessary to extract step-like 

recipe entities. GROBID has been shown to have 

advantages over other methods in first-page and 

bibliographic sections (Lipinski et al. 2013).  Other 

sections, e.g. materials, methodology, results and 

discussion, are not fully extracted or classified by the 

mentioned tools and are often in the wrong order. In 

recipe extraction, sequential order is an important 

feature to extract accurate production steps. In this 

paper, we compare the accuracy, precision, and recall 

of three products of information extraction: (1) 

manually extracted ground truth (text selected and 

ordered by manual annotation); (2) the section output 

of GROBID  (Lopez 2009); and (3) the output of 

MATESC.  
 

1.2 Applications 
 

MATESC is the metadata-aware payload extraction 

component of a broader project whose long-term goal 

is to acquire a corpus of scientific and technical 

documents that are restricted to a specific domain and 

extract free-text recipes consisting of procedural steps 

and entities organized in a sequential form.  For our 

specific application domain of nanomaterials 

synthesis, the documents of interest are academic 

papers collected from open-access web sites using a 

custom crawler and scraper ensemble. The initial 

seeds for the document crawl were provided by the 

subject matter expert.  The papers to be analysed by 

MATESC are PDF files, from which structured 

information such as titles, author lists, keyword lists, 

sets of figures with captions, and specific named 

sections such as the introduction, background and 

related work, experimental method, result data, and 
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summary and conclusions, are captured.  The next 

stage of analysis is to extract recipes, which are 

sequences of steps that specify materials needed and 

methods utilized to produce a nanomaterial. These are 

similar in structure and length to cooking recipes. 

Steps of a recipe may consist of basic unit operations 

or intermediary multi-step methods that are 

composed of more primitive steps.  The framework 

and algorithms of MATESC itself are not limited to 

the domain of nanomaterials alone; there are 

applications in many other scientific and technical 

fields that require reading large numbers of 

documents and would benefit from being able to 

filter, rank, and extract structured information by 

means of section and passage extraction, followed by 

shallow parsing at the sentence level.  Examples of 

such applications include the medical and legal 

domains, where there are large text collections for 

specific professional purposes that practitioners 

regularly sift through in order to obtain procedural 

information. 
 

2 METHODOLOGY 

MATESC takes as input data text extracted using 

PyMuPDF (Liu & McKie, 2018), a tool that provides 

metadata features about each character, including font 

type, font size and spatial location relative to each pdf 

page. The input text is filtered and cleaned by 

removing rare Unicode characters and irrelevant 

information usually found in the margins of each 

document page, using their spatial location. These 

include publication identifiers, headers and footers 

with page numbers, and watermarks. After the text is 

cleaned, our algorithm uses heuristics to merge each 

character into its corresponding line, while 

considering font and spatial location differences to 

differentiate between section titles and section 

content. Those lines are then grouped into paragraphs 

and ordered, considering single, double and triple-

column documents in reconstructing a sequential 

order. Figure 1 shows the workflow of MATESC, 

from the input data stage to the output stage, which is 

customizable for XML, HTML or JSON output. Each 

step is described in detail in the following section. 

 
Figure 1: MATESC’s input processing and section 

classification. 



 

  

 

2.1  Character Merging  

 
Spatial location is helpful when determining whether 

the continuing character belongs to the same word as 

the previous and next character. MATESC uses x, y 

coordinates, font type, and font size to merge lines of 

characters. If the character is within a specified y 

range, that takes into account subscripts and 

superscripts, of the previous character, we append the 

character to that line. If the y range of that character 

is different from the previous character’s range, it 

indicates that a new line has started, and that character 

determines the range of the next line. Because 

mathematical and chemical formulae are important 

for information extraction in material synthesis, 

MATESC checks for subscripts as well; this can be 

challenging because the y range can extrude a 

variable amount above or below a character, causing 

the algorithm to assign the subscript or superscript to 

a new line. To handle this issue, x coordinates are 

considered: if the character is off in the y range but is 

in proximity of the previous and next character in 

terms of x coordinates, then it is recognized as a 

subscript and merged with the line of the preceding 

character. Moreover, for each character, font type and 
size are considered. If font type or size changes and 

the list of those characters are between a certain range 

length, then that line is extracted as a subtitle, their 

position and metadata features are saved and are later 

used for section extraction and ordering. 

 

2.2 Line Grouping 
 

After all characters have been merged into their 

corresponding lines, and subtitles have been extracted 

based on their metadata features, those lines are 

grouped into paragraphs. Here, the x and y 

coordinates are considered. If two lines are in an 

extremely close range of x coordinates and their 

distance in y (vertical distance) is less than the height 

of a character, then those two lines are assigned into 

the same paragraph. Each paragraph is assigned a 

bounding box for which spatial location, and an 

associated average font size and type, are calculated.  

It is important to pass these metadata features for the 

paragraph down the pipeline because these features 

will be used for paragraph sequential ordering.   
 

2.3  Paragraph Ordering  
 

Before we can classify each paragraph into their 

corresponding sections, we must sequentially order 

all paragraphs. Here, we must consider the number of 

columns used in that particular section, which 

determines the heuristics that order the bounding 

boxes of each paragraph by x or y coordinates first. 

We get an idea of what each page looks like by 

calculating the ratio between each the x coordinate 

length and the length of the page without margins. 

This ratio allows us to determine the number of 

columns in each page (e.g., single, two-column, and 

three-column). Then, depending on the column, we 

use different rules for paragraph ordering. If the page 

contains a single column, then we simply order by x. 

If it consists of two or three columns, we order 

separately by y for those paragraphs that are in the 

same x range. Those groups are assigned to a column, 

and then those columns are ordered by the x 

coordinates of their bounding boxes.  
 

2.4  Paragraph Classification  
 

Now that all that paragraphs are in the correct order, 

we can begin to classify each paragraph onto their 

corresponding sections. We use the subtitles extracted 

in Section 2.1, and based on their spatial location, we 

assign everything between that section title and the 

next one to that section title. Moreover, once all of the 

paragraphs have been assigned to a section, we use 

the spatial location and page number of each subtitle 

to perform an overall sequential ordering of all the 

sections. If no subtitles were found, we use column 

information to differentiate between abstract and 

body. Since it is common for an abstract to be single-

column, while the rest of the paper is two-column.   

3 EXPERIMENT DESIGN 

3.1 Evaluation Method: Manual 

Extraction for Ground Truth  

  
To evaluate the output of MATESC, we manually 

extracted sections from 300 papers to obtain a 

reference version (the designated ground truth) and 

compared this against two automatically-generated 

outputs: that of the chemical IE system GROBID and 

that of MATESC.  

The manual extraction process to produce each 

payload, a reference extract in raw unformatted text 

form, consists of simple highlighting (copying) of 

contiguous sections of text, one column block at a 

time. A human annotator must exercise judgement to 

make decisions on the extent of a column block and 

the ordering of these blocks when pasting them into a 

file.   



 

Because MATESC was designed for the purpose 

of IE from papers in a specific domain of interest - 

nanomaterials synthesis - it is important to test its 

generalization quality. To test transferability across 

various domain fields and journals, the experimental 

corpus was deliberately constructed using 150 papers 

known to be relevant to our application domain plus 

another 150 random PDFs scraped from the web 

using a built-in random file selection function of the 

Scrapy web crawling framework (Myers & McGuffee 

2015).  
 

3.2 Distance Metrics for Text 
 

The evaluation approach consists of computing 

distance metrics between reference (ground truth) and 

automatic extracts. We use distance metrics for text 

alignment as in common practice in bioinformatics 

(Xia 2007) and payload-extraction approaches to web 

page cleaning (Marek et al. 2008) , (Weninger et al. 

2010) .  

The overall IE system within which our text 

payload extraction task fits is geared towards 

capturing all text related to a recipe, and ultimately 

extracting a structured representation of that recipe. 

The system thus includes a separate pipeline to 

extract images, tables, figure captions, chemical and 

mathematical formulas. However, the output of 

MATESC omits such text snippets, resulting in a 

penalty to its score because such omissions would be 

scored as deletions from the reference extract.   

To account for this issue, we consider two 

measures of string comparison: Longest Common 

Substring (LCSTR) and Longest Common 

Subsequence (LCS). LCSTR finds the longest 

substring(s) between two strings, while LCS finds the 

longest string that is a shared subsequence between 

two strings, allowing for position disparity in 

individual words. LCS is thus a more tolerant 

measure for standalone algorithms and heuristics 

designed to extract separate components of the 

payload.  This metric is more salient to our task as it 

can ignore strings that are passed to an independent 

pattern recognition subsystem, rather than penalizing 

for their omission.  

We use the length of these two resulting strings, 

LCSTR and LCS, to compute precision, recall, and 

accuracy. 

4 RESULTS 

4.1  Random Documents 

 
Table 1 shows the average scoring results for all 

sections on random papers. Using LCS, the null 

hypothesis that GROBID classifies a greater number 

of words into their corresponding section than 

MATESC is rejected with p < 0.000000122 (1.22 ✕ 

10-7) at the 95% level of confidence using a paired, 

one-tailed t-test on their F1 scores. On the other hand, 

using LCSTR the null hypothesis fails to be rejected 

with p < 0.09449 at the 95% level of confidence using 

a paired, one-tailed t-test on their F1 scores. 
  

Random Papers 

 TPR FPR PPV ACC F1 

MATESC 
LCSTR 

0.1189 0.2079 0.1656 0.6807 0.1065 

MATESC 

LCS 

0.6291 0.1088 0.6306 0.8489 0.5727 

GROBID 

LCSTR 

0.0949 0.1320 0.1475 0.7164 0.0973 

GROBID 

LCS 

0.4184 0.0658 0.5659 0.8185 0.4370 

Table 1: Precision, Recall, Accuracy and F1 for random 

papers across MATESC and GROBID using LCS and 

LCSTR 

4.2  Domain-Relevant Documents 
 

For domain relevant papers, Table 2 shows the 

average scoring results for all sections. The null  
 

Domain-Relevant Papers 

 TPR FPR PPV ACC F1 

MATESC 

LCSTR 

0.1334 0.2669 0.1793 0.6009 0.1281 

MATESC 

LCS 

0.7366 0.0816 0.7755 0.8787 0.7234 

GROBID 

LCSTR 

0.0870 0.1611 0.2103 0.6306 0.0908 

GROBID 
LCS 

0.3725 0.0630 0.5796 0.7553 0.3915 

Table 2: Precision, Recall, Accuracy and F1 for relevant 

papers across MATESC and GROBID using LCS and 

LCSTR
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Table 3: Precision, Recall, Accuracy and F1 for all sections in relevant and random papers across both MATESC and 

GROBID using LCS and LCST 

 

hypothesis that GROBID classifies a greater number 

of words into their corresponding section than 

MATESC using LCSTR and LCS is rejected with p < 

8.99 ✕ 10-10 and p < 2.38 x 10-29 at the 95% level of 

confidence using a paired, one-tailed t-test on their F1 

scores.   

 

4.3 Sections 

 
Averages for each individual section are shown on 

Table 3, we show precision, recall, accuracy and F1 

scores for only general sections (title, authors, 

abstract, keywords, methodology, results, 

conclusions, acknowledgments, references) using 

both LCS and LCSTR for MATESC. While Table 4 

shows the results for only random papers are shown 

given the importance of transferability across 

different domains. Other sections that are specific to 

each paper are not shown in the table as they cannot 

be averaged across documents. For LCS, it is 

observed that the precision, recall and F1 score of 

GROBID are on average higher than those of 

MATESC for title and abstract, and introduction; 

while for all other sections, the output of MATESC 

scores higher. For LCSTR, the precision, recall and 

F1 score of GROBID are on average higher than those 

of MATESC for title, abstract, introduction, 

methodology and results.  These findings are in 

keeping with the modular design principle of our 

overall IE system including MATESC and the 

hypothesis that LCS is a more lenient metric across 

the board but also a more salient one for such modular 

systems. 

 

5 CONCLUSIONS 

 
5.1  Summary and Interpretation of 

Results 

MATESC Random Papers 

  LCSTR LCS 

  TPR FPR PPV ACC F1 TPR FPR PPV ACC F1 

Title 0.5034 0.0015 0.2871 0.9971 0.3594 0.5154 0.0015 0.2959 0.9971 0.3694 

Author  0.1493 0.0025 0.1516 0.9947 0.1367 0.2275 0.0023 0.2455 0.9952 0.2204 

Keywords  0.1433 0.1268 0.0910 0.8714 0.0391 0.2333 0.1266 0.0760 0.8718 0.0314 

Abstract  0.4418 0.0201 0.4070 0.9601 0.3934 0.7440 0.0088 0.7422 0.9822 0.7136 

Introduction  0.1500 0.1972 0.1221 0.7280 0.1234 0.8206 0.1185 0.6224 0.8716 0.6664 

Methodology  0.0771 0.1670 0.1030 0.7116 0.0746 0.6545 0.0604 0.7041 0.8833 0.6404 

Result  0.0861 0.2045 0.1544 0.6630 0.0750 0.6190 0.0846 0.6393 0.8537 0.5730 

Discussion  0.1437 0.1270 0.1877 0.7989 0.1183 0.6466 0.0682 0.6046 0.9022 0.5578 

Acknowledgment  0.2561 0.0383 0.2317 0.9402 0.1874 0.4822 0.0267 0.4063 0.9601 0.3686 

Reference  0.1742 0.0783 0.2732 0.8344 0.1612 0.5417 0.0275 0.6028 0.9215 0.5041 

GROBID Random Papers 

  LCSTR LCS 

  TPR FPR PPV ACC F1 TPR FPR PPV ACC F1 

Title 0.8730 0.0019 0.5106 0.9978 0.6295 0.9048 0.0018 0.5430 0.9980 0.6615 

Author  0.0531 0.0120 0.0220 0.9851 0.0268 0.0997 0.0118 0.0462 0.9856 0.0537 

Keywords  0.1233 0.1151 0.0493 0.8830 0.0230 0.2288 0.1149 0.0430 0.8834 0.0219 

Abstract  0.4507 0.0239 0.4197 0.9573 0.4113 0.7978 0.0112 0.7714 0.9820 0.7572 

Introduction  0.1692 0.1196 0.1807 0.7943 0.1671 0.8319 0.0263 0.8399 0.9553 0.8202 

Methodology  0.0921 0.1408 0.1117 0.7310 0.0922 0.5164 0.0558 0.6660 0.8641 0.5484 

Result  0.0797 0.1315 0.1574 0.7040 0.0820 0.3579 0.0655 0.5716 0.8012 0.3887 

Discussion  0.1084 0.0950 0.1323 0.8187 0.1059 0.3869 0.0599 0.4212 0.8764 0.3712 

Acknowledgment  0.0946 0.0354 0.2209 0.9359 0.0844 0.1650 0.0339 0.2202 0.9387 0.1089 

Reference  0.0054 0.0985 0.0172 0.7956 0.0056 0.0347 0.0952 0.0601 0.8012 0.0343 



 

As expected, the results for LCS are on average better 

than the results for LCSTR across both types of 

papers and extractors. For random papers, in the case 

of LCSTR, results for GROBID and MATESC are 

not statistically different, which can be explained by 

the development focus of MATESC on a scientific 

domain relevant to those for which GROBID was 

designed. However, the LCS score for the output of 

MATESC was slightly better than that of GROBID 

for random paper; the LCSTR scores for MATESC 

were comparable to those of GROBID for relevant 

papers and the LCS scores were substantially better, 

as expected due to our development focus.  

In the case of particular sections, for titles, authors 

and reference sections, the output of GROBID is 

expected to be more accurate than that of MATESC, 

as that is the design focus of GROBID and not of our 

system. From the results reported in the preceding 

section we infer that GROBID outperforms 

MATESC on authors and references because its 

output for those more structured sections contain 

more information (e.g., university, address, phone 

numbers) than our manually extracted authors, which 

only contained the first and last name of each author, 

similarly with references.  

Overall, MATESC performed in average similar 

or better than a well-established text extractor such as 

GROBID.  

 

5.2  Future Work 
 

Natural language processing (NLP) and Machine 

learning approaches are likely to improve MATESC 

heuristics on header and footer text, figure and table 

text, and subtitle recognition. Supervised learning to 

classify lexical units (token N-grams, phrases, and 

spans) to exclude header and footer text can decrease 

the false positive rate (FPR) on section bodies. 

Similar techniques can be used to determine whether 

text belongs to the body of a section or if it is part of 

a figure or table. Finally, MATESC uses section titles 

as section delimiters; therefore, a better section title 

recognition mechanism can aid in identifying 

correctly whether a new section begins and where it 

ends. 

Another measurement that would be useful to 

calculate is the Levenshtein Distance (LD) (Weninger 

et al., 2010), which calculates the edit distance of two 

strings considering deletions, insertions and 

substitutions. This would give us a penalty score in 

which we can compare different extractors (or 

versions of our extractor) without the cost of 

performing the calculations for both LCS and 

LCSTR. This could help in the development task by 

decreasing the time of testing. 

ACKNOWLEDGEMENTS 

 

 

REFERENCES 

Anon, Apache PDFBox | A Java PDF Library. Available at: 

https://pdfbox.apache.org/ [Accessed May 24, 2018a]. 

Anon, TET. Available at: 

http://www.pdflib.com/products/tet/ [Accessed May 

24, 2018b]. 

Crochemore, M. et al., 2015. The longest common 

substring problem. Mathematical Structures in 

Computer Science, 27(02), pp.277–295. 

Han, H., Giles, C. L., & Manavoglu, E., 2003. Automatic 

document metadata extraction using support vector 

machines. Proceedings of the 2003 Joint Conference on 

Digital Lib. Available at: 

http://dx.doi.org/10.1109/jcdl.2003.1204842. 

Kim, E. et al., 2017. Materials Synthesis Insights from 

Scientific Literature via Text Extraction and Machine 

Learning. Chemistry of materials: a publication of the 

American Chemical Society, 29(21), pp.9436–9444. 

Lipinski, M. et al., 2013. Evaluation of Header Metadata 

Extraction Approaches and Tools for Scientific PDF 

Documents. Available at: 

https://books.google.com/books/about/Evaluation_of_

Header_Metadata_Extraction.html?hl=&id=j7JCAQA

ACAAJ. 

Liu, R., & McKie, J. X.., PyMuPDF. Available at: 

http://pymupdf.readthedocs.io/en/latest/ [Accessed 

May 24, 2018]. 

Lopez, P., 2009. GROBID: Combining Automatic 

Bibliographic Data Recognition and Term Extraction 

for Scholarship Publications. , pp.473–474. 

Marek, M., Pecina, P., & Spousta, M., 2007. Web page 

cleaning with conditional random fields. In Fairon, C., 

Naets, H., Kilgarriff, A., & de Schryver, G.-M., eds. 

_Building and Exploring Web Corpora (WAC3 - 2007): 

Proceedings of the 3rd web as corpus workshop, 

incorporating cleaneval_, pp. 155-162. 

Myers, D. & McGuffee, J.W., 2015. Choosing Scrapy. 

Journal of Computing Sciences in Colleges, 31(1), 

pp.83–89. 

Noonburg, D., Poppler. Available at: 

http://poppler.freedesktop.org [Accessed May 24, 

http://paperpile.com/b/3AF9L8/4xht
http://paperpile.com/b/3AF9L8/4xht
https://pdfbox.apache.org/
http://paperpile.com/b/3AF9L8/4xht
http://paperpile.com/b/3AF9L8/MTnQ
http://paperpile.com/b/3AF9L8/MTnQ
http://www.pdflib.com/products/tet/
http://paperpile.com/b/3AF9L8/MTnQ
http://paperpile.com/b/3AF9L8/MTnQ
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://dx.doi.org/10.1109/jcdl.2003.1204842
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/ikx3
https://books.google.com/books/about/Evaluation_of_Header_Metadata_Extraction.html?hl=&id=j7JCAQAACAAJ
https://books.google.com/books/about/Evaluation_of_Header_Metadata_Extraction.html?hl=&id=j7JCAQAACAAJ
https://books.google.com/books/about/Evaluation_of_Header_Metadata_Extraction.html?hl=&id=j7JCAQAACAAJ
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/dJRM
http://paperpile.com/b/3AF9L8/dJRM
http://pymupdf.readthedocs.io/en/latest/
http://paperpile.com/b/3AF9L8/dJRM
http://paperpile.com/b/3AF9L8/dJRM
http://paperpile.com/b/3AF9L8/zbgX
http://paperpile.com/b/3AF9L8/zbgX
http://paperpile.com/b/3AF9L8/zbgX
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/mUmJ
http://paperpile.com/b/3AF9L8/mUmJ
http://poppler.freedesktop.org/
http://paperpile.com/b/3AF9L8/mUmJ


 

  

 

2018]. 

Paterson, M. & Dančík, V., 1994. Longest common 

subsequences. In Mathematical Foundations of 

Computer Science 1994. International Symposium on 

Mathematical Foundations of Computer Science. 

Springer, Berlin, Heidelberg, pp. 127–142. 

Prasad, A., Kaur, M. & Kan, M.-Y., 2018. Neural ParsCit: 

a deep learning-based reference string parser. 

International Journal on Digital Libraries. Available 

at: http://dx.doi.org/10.1007/s00799-018-0242-1. 

Weninger, T., Hsu, W. H., & Han, J., 2010. CETR - content 

extraction via tag ratios. In _Proceedings of the 19th 

International World Wide Web Conference (WWW 

2010)_, pp. 971-980. doi:10.1145/1772690.1772789 

Wu, J. et al., 2015. PDFMEF. In Proceedings of the 

Knowledge Capture Conference on ZZZ - K-CAP 2015. 

Available at: 

http://dx.doi.org/10.1145/2815833.2815834. 

Xia, X., 2007. _Bioinformatics and the Cell: Modern 

Computational Approaches in Genomics, Proteomics 

and Transcriptomics_, pp. 24-48. New York, NY, USA: 

Springer. 

 

http://paperpile.com/b/3AF9L8/mUmJ
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://dx.doi.org/10.1007/s00799-018-0242-1
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://dx.doi.org/10.1145/2815833.2815834
http://paperpile.com/b/3AF9L8/6X6s

	1 INTRODUCTION
	2 METHODOLOGY

