

MATESC: Metadata-Analytic Text Extractor and Section Classifier

for PDF Scientific Publications

Maria F. De La Torre, Carlos A. Aguirre, BreAnn Anshutz, and William H. Hsu
1Department of Computer Science, Kansas State University, 2184 Engineering Hall, Manhattan, KS 66506

Keywords: Structured information extraction, document analysis, text analytics, metadata, classification, information

Abstract: This paper addresses the task of extracting free-text sections from scientific PDF documents, and specifically

the problem of formatting disparity among different publications, by analysing their metadata. For the purpose

of extracting procedural knowledge in the form of recipes from papers, and for the application domain of

nanomaterial synthesis, we present Metadata-Analytic Text Extractor and Section Classifier (MATESC), a

heuristic rule-based pattern analysis system for text extraction and section classification from scientific

literature. MATESC extracts text spans and uses metadata features such as spatial layout location, font type,

and font size to create grouped blocks of text and classify them into groups and subgroups based on rules that

characterize specific paper sections. The main purpose of our tool is to facilitate information and semantic

knowledge extraction across different domain topics and journal formats. We measure the accuracy of

MATESC using string matching algorithms to compute alignment costs between each section extracted by

our tool and manually-extracted sections. To test its transferability across domains, we measure its accuracy

on papers that are relevant to the papers that were used to determine our rule-based methodology and also on

random papers crawled from the web. In the future, we will use natural language processing to improve

paragraph grouping and classification.

1 INTRODUCTION

MATESC is a metadata-analytic text extractor and

section classifier that uses metadata features and

heuristics to classify examined text elements that are

extracted from Portable Document Format (PDF)

scientific publications into titled sections and

subsections. Examples of metadata features include

font size, font type, and spatial location of elements

that can in turn be localized using computer vision

and pattern recognition algorithms. MATESC was

designed to be a generalized extractor whose

functionality is transferable across different domain

topics and journal publishers. The purpose of section

classification in our extraction task is to address the

problem of IR-based and knowledge-based question

answering (QA), which requires the extraction of

passages directly from documents, guided by the text

of the user question, to formulate a structured

response (Jurafsky and Martin 2009).

Given the potentially enormous amount of text

and information that can be retrieved from a

document, section extraction for QA tasks entails

narrowing down search sections, controlling a user

interface to focus on specific sections and passages of

interest, and reducing costs of extracting answers for

specific predetermined user queries or search-based

QA. In fields such as material science, QA tasks

require the extraction of domain-specific information,

such as recipes for synthesizing a material of interest

(Kim et al. 2017). These are stepwise procedures

consisting of named compounds and operations. Our

goal is to use MATESC to obtain specific text

sections, such as “Materials and Methodology”, that

can be annotated to obtain training data for machine

learning algorithms, resulting in models for natural

language processing such as snippet and passage

extraction, named entity recognition (NER), set

expansion, relationship extraction, chunk parsing,

and semantic role labelling. This in turn allows new

documents to be tagged with mark-up for snippets or

https://paperpile.com/c/3AF9L8/CFsr

passages, named entities, chemical terms and the

acronyms and synonyms, “verbs” denoting unit

operations or sub-procedures, unknown terms in the

form of noun phrases, and recognizable roles of

recipe ingredients. The end-to-end function of this

cognitive computing pipeline uses text and

knowledge features to drive a process based on semi-

supervised learning to produce material synthesis

recipes.

This paper presents a rule-based algorithm used to

extract section titles, beyond header information, and

group lines of text in their corresponding paragraphs

while placing those paragraphs in their correct

sequential order. To measure the effectiveness of our

algorithm in section classification and ordering, we

developed a user interface to manually extract section

titles and their content from 300 documents to create

our ground truth. With the purpose of creating a

transferable tool across different domain topics, we

compared efficiency measures between the domain-

topic used to develop MATESC, material synthesis,

and other random domains. Half of the documents

were relevant to material synthesis determined by

field professionals, and the other half were randomly

crawled from the web using the open-source web-

crawling platform, Scrapy (Myers & McGuffee

2015). The length of the longest common

subsequence (LLCS) (Paterson & Dančík 1994),, and

the length of the longest common substring,

(LLCSTR) (Crochemore et al. 2015) were measured

to determine similarity, precision, recall and accuracy

between the manually extracted ground truth and the

sections extracted by MATESC. For ordering of

section measurements, we use different variations of

k, which determines comparison of sections only if

they k indices apart.

1.1 Background

QA tasks rely heavily on the amount of information

publicly available in the world wide web (Jurafsky

and Martin 2009). With the tremendous growth of

scientific documents publicly available, the disparity

among different domain topics and journals in the

same domain increase as well. Although there seems

to be a general guideline for scientific papers, there

are various format differences that bring challenges in

handling this disparity to create a generalized tool. In

some documents, section subtitles are not included,

making it difficult for natural language processing to

parse header data.

To address format disparity challenges, metadata

extraction tools have been developed for specific

entities extraction, specifically headers (e.g. title,

authors, keywords, abstract) and bibliographic data.

Apache PDFBox (Anon n.d.), PDFLib TET (Anon

n.d.) and Poppler (Noonburg n.d.) extract text and

attributes of PDF documents. Open-source header

and bibliographic data parsers include GROBID

(Lopez 2009) , ParsCit (Prasad et al. 2018) and

SVMHeaderParse (Han et al. 2003) For table and

figures extraction, and PDFFigures (Clark and

Divvala 2016) have been developed for general

academic publications. To encapsulate all of these

various open source tools into one framework,

PDFMEF (Wu et al. 2015) brings users a

customizable and scalable tool to bring the best

capabilities of each tool into one tool. Extraction of

first-page header information is useful for clustering

documents and identifying duplicates, where a

combination of authors and title are assumed to be

unique to each document. For structured recipe

extraction, sections beyond the first page and

bibliographic data are necessary to extract step-like

recipe entities. GROBID has been shown to have

advantages over other methods in first-page and

bibliographic sections (Lipinski et al. 2013). Other

sections, e.g. materials, methodology, results and

discussion, are not fully extracted or classified by the

mentioned tools and are often in the wrong order. In

recipe extraction, sequential order is an important

feature to extract accurate production steps. In this

paper, we compare the accuracy, precision, and recall

of three products of information extraction: (1)

manually extracted ground truth (text selected and

ordered by manual annotation); (2) the section output

of GROBID (Lopez 2009); and (3) the output of

MATESC.

1.2 Applications

MATESC is the metadata-aware payload extraction

component of a broader project whose long-term goal

is to acquire a corpus of scientific and technical

documents that are restricted to a specific domain and

extract free-text recipes consisting of procedural steps

and entities organized in a sequential form. For our

specific application domain of nanomaterials

synthesis, the documents of interest are academic

papers collected from open-access web sites using a

custom crawler and scraper ensemble. The initial

seeds for the document crawl were provided by the

subject matter expert. The papers to be analysed by

MATESC are PDF files, from which structured

information such as titles, author lists, keyword lists,

sets of figures with captions, and specific named

sections such as the introduction, background and

related work, experimental method, result data, and

https://paperpile.com/c/3AF9L8/Yefp
https://paperpile.com/c/3AF9L8/Yefp
https://paperpile.com/c/3AF9L8/RdDH
https://paperpile.com/c/3AF9L8/8ztt
https://paperpile.com/c/3AF9L8/4xht
https://paperpile.com/c/3AF9L8/MTnQ
https://paperpile.com/c/3AF9L8/MTnQ
https://paperpile.com/c/3AF9L8/mUmJ
https://paperpile.com/c/3AF9L8/zbgX
https://paperpile.com/c/3AF9L8/6Uuj
https://paperpile.com/c/3AF9L8/UQYD
https://paperpile.com/c/3AF9L8/6X6s
https://paperpile.com/c/3AF9L8/ikx3
https://paperpile.com/c/3AF9L8/zbgX

summary and conclusions, are captured. The next

stage of analysis is to extract recipes, which are

sequences of steps that specify materials needed and

methods utilized to produce a nanomaterial. These are

similar in structure and length to cooking recipes.

Steps of a recipe may consist of basic unit operations

or intermediary multi-step methods that are

composed of more primitive steps. The framework

and algorithms of MATESC itself are not limited to

the domain of nanomaterials alone; there are

applications in many other scientific and technical

fields that require reading large numbers of

documents and would benefit from being able to

filter, rank, and extract structured information by

means of section and passage extraction, followed by

shallow parsing at the sentence level. Examples of

such applications include the medical and legal

domains, where there are large text collections for

specific professional purposes that practitioners

regularly sift through in order to obtain procedural

information.

2 METHODOLOGY

MATESC takes as input data text extracted using

PyMuPDF (Liu & McKie, 2018), a tool that provides

metadata features about each character, including font

type, font size and spatial location relative to each pdf

page. The input text is filtered and cleaned by

removing rare Unicode characters and irrelevant

information usually found in the margins of each

document page, using their spatial location. These

include publication identifiers, headers and footers

with page numbers, and watermarks. After the text is

cleaned, our algorithm uses heuristics to merge each

character into its corresponding line, while

considering font and spatial location differences to

differentiate between section titles and section

content. Those lines are then grouped into paragraphs

and ordered, considering single, double and triple-

column documents in reconstructing a sequential

order. Figure 1 shows the workflow of MATESC,

from the input data stage to the output stage, which is

customizable for XML, HTML or JSON output. Each

step is described in detail in the following section.

Figure 1: MATESC’s input processing and section

classification.

2.1 Character Merging

Spatial location is helpful when determining whether

the continuing character belongs to the same word as

the previous and next character. MATESC uses x, y

coordinates, font type, and font size to merge lines of

characters. If the character is within a specified y

range, that takes into account subscripts and

superscripts, of the previous character, we append the

character to that line. If the y range of that character

is different from the previous character’s range, it

indicates that a new line has started, and that character

determines the range of the next line. Because

mathematical and chemical formulae are important

for information extraction in material synthesis,

MATESC checks for subscripts as well; this can be

challenging because the y range can extrude a

variable amount above or below a character, causing

the algorithm to assign the subscript or superscript to

a new line. To handle this issue, x coordinates are

considered: if the character is off in the y range but is

in proximity of the previous and next character in

terms of x coordinates, then it is recognized as a

subscript and merged with the line of the preceding

character. Moreover, for each character, font type and
size are considered. If font type or size changes and

the list of those characters are between a certain range

length, then that line is extracted as a subtitle, their

position and metadata features are saved and are later

used for section extraction and ordering.

2.2 Line Grouping

After all characters have been merged into their

corresponding lines, and subtitles have been extracted

based on their metadata features, those lines are

grouped into paragraphs. Here, the x and y

coordinates are considered. If two lines are in an

extremely close range of x coordinates and their

distance in y (vertical distance) is less than the height

of a character, then those two lines are assigned into

the same paragraph. Each paragraph is assigned a

bounding box for which spatial location, and an

associated average font size and type, are calculated.

It is important to pass these metadata features for the

paragraph down the pipeline because these features

will be used for paragraph sequential ordering.

2.3 Paragraph Ordering

Before we can classify each paragraph into their

corresponding sections, we must sequentially order

all paragraphs. Here, we must consider the number of

columns used in that particular section, which

determines the heuristics that order the bounding

boxes of each paragraph by x or y coordinates first.

We get an idea of what each page looks like by

calculating the ratio between each the x coordinate

length and the length of the page without margins.

This ratio allows us to determine the number of

columns in each page (e.g., single, two-column, and

three-column). Then, depending on the column, we

use different rules for paragraph ordering. If the page

contains a single column, then we simply order by x.

If it consists of two or three columns, we order

separately by y for those paragraphs that are in the

same x range. Those groups are assigned to a column,

and then those columns are ordered by the x

coordinates of their bounding boxes.

2.4 Paragraph Classification

Now that all that paragraphs are in the correct order,

we can begin to classify each paragraph onto their

corresponding sections. We use the subtitles extracted

in Section 2.1, and based on their spatial location, we

assign everything between that section title and the

next one to that section title. Moreover, once all of the

paragraphs have been assigned to a section, we use

the spatial location and page number of each subtitle

to perform an overall sequential ordering of all the

sections. If no subtitles were found, we use column

information to differentiate between abstract and

body. Since it is common for an abstract to be single-

column, while the rest of the paper is two-column.

3 EXPERIMENT DESIGN

3.1 Evaluation Method: Manual

Extraction for Ground Truth

To evaluate the output of MATESC, we manually

extracted sections from 300 papers to obtain a

reference version (the designated ground truth) and

compared this against two automatically-generated

outputs: that of the chemical IE system GROBID and

that of MATESC.

The manual extraction process to produce each

payload, a reference extract in raw unformatted text

form, consists of simple highlighting (copying) of

contiguous sections of text, one column block at a

time. A human annotator must exercise judgement to

make decisions on the extent of a column block and

the ordering of these blocks when pasting them into a

file.

Because MATESC was designed for the purpose

of IE from papers in a specific domain of interest -

nanomaterials synthesis - it is important to test its

generalization quality. To test transferability across

various domain fields and journals, the experimental

corpus was deliberately constructed using 150 papers

known to be relevant to our application domain plus

another 150 random PDFs scraped from the web

using a built-in random file selection function of the

Scrapy web crawling framework (Myers & McGuffee

2015).

3.2 Distance Metrics for Text

The evaluation approach consists of computing

distance metrics between reference (ground truth) and

automatic extracts. We use distance metrics for text

alignment as in common practice in bioinformatics

(Xia 2007) and payload-extraction approaches to web

page cleaning (Marek et al. 2008) , (Weninger et al.

2010) .

The overall IE system within which our text

payload extraction task fits is geared towards

capturing all text related to a recipe, and ultimately

extracting a structured representation of that recipe.

The system thus includes a separate pipeline to

extract images, tables, figure captions, chemical and

mathematical formulas. However, the output of

MATESC omits such text snippets, resulting in a

penalty to its score because such omissions would be

scored as deletions from the reference extract.

To account for this issue, we consider two

measures of string comparison: Longest Common

Substring (LCSTR) and Longest Common

Subsequence (LCS). LCSTR finds the longest

substring(s) between two strings, while LCS finds the

longest string that is a shared subsequence between

two strings, allowing for position disparity in

individual words. LCS is thus a more tolerant

measure for standalone algorithms and heuristics

designed to extract separate components of the

payload. This metric is more salient to our task as it

can ignore strings that are passed to an independent

pattern recognition subsystem, rather than penalizing

for their omission.

We use the length of these two resulting strings,

LCSTR and LCS, to compute precision, recall, and

accuracy.

4 RESULTS

4.1 Random Documents

Table 1 shows the average scoring results for all

sections on random papers. Using LCS, the null

hypothesis that GROBID classifies a greater number

of words into their corresponding section than

MATESC is rejected with p < 0.000000122 (1.22 ✕

10-7) at the 95% level of confidence using a paired,

one-tailed t-test on their F1 scores. On the other hand,

using LCSTR the null hypothesis fails to be rejected

with p < 0.09449 at the 95% level of confidence using

a paired, one-tailed t-test on their F1 scores.

Random Papers

 TPR FPR PPV ACC F1

MATESC
LCSTR

0.1189 0.2079 0.1656 0.6807 0.1065

MATESC

LCS

0.6291 0.1088 0.6306 0.8489 0.5727

GROBID

LCSTR

0.0949 0.1320 0.1475 0.7164 0.0973

GROBID

LCS

0.4184 0.0658 0.5659 0.8185 0.4370

Table 1: Precision, Recall, Accuracy and F1 for random

papers across MATESC and GROBID using LCS and

LCSTR

4.2 Domain-Relevant Documents

For domain relevant papers, Table 2 shows the

average scoring results for all sections. The null

Domain-Relevant Papers

 TPR FPR PPV ACC F1

MATESC

LCSTR

0.1334 0.2669 0.1793 0.6009 0.1281

MATESC

LCS

0.7366 0.0816 0.7755 0.8787 0.7234

GROBID

LCSTR

0.0870 0.1611 0.2103 0.6306 0.0908

GROBID
LCS

0.3725 0.0630 0.5796 0.7553 0.3915

Table 2: Precision, Recall, Accuracy and F1 for relevant

papers across MATESC and GROBID using LCS and

LCSTR

https://paperpile.com/c/3AF9L8/Yefp
https://paperpile.com/c/3AF9L8/Yefp

Table 3: Precision, Recall, Accuracy and F1 for all sections in relevant and random papers across both MATESC and

GROBID using LCS and LCST

hypothesis that GROBID classifies a greater number

of words into their corresponding section than

MATESC using LCSTR and LCS is rejected with p <

8.99 ✕ 10-10 and p < 2.38 x 10-29 at the 95% level of

confidence using a paired, one-tailed t-test on their F1

scores.

4.3 Sections

Averages for each individual section are shown on

Table 3, we show precision, recall, accuracy and F1

scores for only general sections (title, authors,

abstract, keywords, methodology, results,

conclusions, acknowledgments, references) using

both LCS and LCSTR for MATESC. While Table 4

shows the results for only random papers are shown

given the importance of transferability across

different domains. Other sections that are specific to

each paper are not shown in the table as they cannot

be averaged across documents. For LCS, it is

observed that the precision, recall and F1 score of

GROBID are on average higher than those of

MATESC for title and abstract, and introduction;

while for all other sections, the output of MATESC

scores higher. For LCSTR, the precision, recall and

F1 score of GROBID are on average higher than those

of MATESC for title, abstract, introduction,

methodology and results. These findings are in

keeping with the modular design principle of our

overall IE system including MATESC and the

hypothesis that LCS is a more lenient metric across

the board but also a more salient one for such modular

systems.

5 CONCLUSIONS

5.1 Summary and Interpretation of

Results

MATESC Random Papers

 LCSTR LCS

 TPR FPR PPV ACC F1 TPR FPR PPV ACC F1

Title 0.5034 0.0015 0.2871 0.9971 0.3594 0.5154 0.0015 0.2959 0.9971 0.3694

Author 0.1493 0.0025 0.1516 0.9947 0.1367 0.2275 0.0023 0.2455 0.9952 0.2204

Keywords 0.1433 0.1268 0.0910 0.8714 0.0391 0.2333 0.1266 0.0760 0.8718 0.0314

Abstract 0.4418 0.0201 0.4070 0.9601 0.3934 0.7440 0.0088 0.7422 0.9822 0.7136

Introduction 0.1500 0.1972 0.1221 0.7280 0.1234 0.8206 0.1185 0.6224 0.8716 0.6664

Methodology 0.0771 0.1670 0.1030 0.7116 0.0746 0.6545 0.0604 0.7041 0.8833 0.6404

Result 0.0861 0.2045 0.1544 0.6630 0.0750 0.6190 0.0846 0.6393 0.8537 0.5730

Discussion 0.1437 0.1270 0.1877 0.7989 0.1183 0.6466 0.0682 0.6046 0.9022 0.5578

Acknowledgment 0.2561 0.0383 0.2317 0.9402 0.1874 0.4822 0.0267 0.4063 0.9601 0.3686

Reference 0.1742 0.0783 0.2732 0.8344 0.1612 0.5417 0.0275 0.6028 0.9215 0.5041

GROBID Random Papers

 LCSTR LCS

 TPR FPR PPV ACC F1 TPR FPR PPV ACC F1

Title 0.8730 0.0019 0.5106 0.9978 0.6295 0.9048 0.0018 0.5430 0.9980 0.6615

Author 0.0531 0.0120 0.0220 0.9851 0.0268 0.0997 0.0118 0.0462 0.9856 0.0537

Keywords 0.1233 0.1151 0.0493 0.8830 0.0230 0.2288 0.1149 0.0430 0.8834 0.0219

Abstract 0.4507 0.0239 0.4197 0.9573 0.4113 0.7978 0.0112 0.7714 0.9820 0.7572

Introduction 0.1692 0.1196 0.1807 0.7943 0.1671 0.8319 0.0263 0.8399 0.9553 0.8202

Methodology 0.0921 0.1408 0.1117 0.7310 0.0922 0.5164 0.0558 0.6660 0.8641 0.5484

Result 0.0797 0.1315 0.1574 0.7040 0.0820 0.3579 0.0655 0.5716 0.8012 0.3887

Discussion 0.1084 0.0950 0.1323 0.8187 0.1059 0.3869 0.0599 0.4212 0.8764 0.3712

Acknowledgment 0.0946 0.0354 0.2209 0.9359 0.0844 0.1650 0.0339 0.2202 0.9387 0.1089

Reference 0.0054 0.0985 0.0172 0.7956 0.0056 0.0347 0.0952 0.0601 0.8012 0.0343

As expected, the results for LCS are on average better

than the results for LCSTR across both types of

papers and extractors. For random papers, in the case

of LCSTR, results for GROBID and MATESC are

not statistically different, which can be explained by

the development focus of MATESC on a scientific

domain relevant to those for which GROBID was

designed. However, the LCS score for the output of

MATESC was slightly better than that of GROBID

for random paper; the LCSTR scores for MATESC

were comparable to those of GROBID for relevant

papers and the LCS scores were substantially better,

as expected due to our development focus.

In the case of particular sections, for titles, authors

and reference sections, the output of GROBID is

expected to be more accurate than that of MATESC,

as that is the design focus of GROBID and not of our

system. From the results reported in the preceding

section we infer that GROBID outperforms

MATESC on authors and references because its

output for those more structured sections contain

more information (e.g., university, address, phone

numbers) than our manually extracted authors, which

only contained the first and last name of each author,

similarly with references.

Overall, MATESC performed in average similar

or better than a well-established text extractor such as

GROBID.

5.2 Future Work

Natural language processing (NLP) and Machine

learning approaches are likely to improve MATESC

heuristics on header and footer text, figure and table

text, and subtitle recognition. Supervised learning to

classify lexical units (token N-grams, phrases, and

spans) to exclude header and footer text can decrease

the false positive rate (FPR) on section bodies.

Similar techniques can be used to determine whether

text belongs to the body of a section or if it is part of

a figure or table. Finally, MATESC uses section titles

as section delimiters; therefore, a better section title

recognition mechanism can aid in identifying

correctly whether a new section begins and where it

ends.

Another measurement that would be useful to

calculate is the Levenshtein Distance (LD) (Weninger

et al., 2010), which calculates the edit distance of two

strings considering deletions, insertions and

substitutions. This would give us a penalty score in

which we can compare different extractors (or

versions of our extractor) without the cost of

performing the calculations for both LCS and

LCSTR. This could help in the development task by

decreasing the time of testing.

ACKNOWLEDGEMENTS

REFERENCES

Anon, Apache PDFBox | A Java PDF Library. Available at:

https://pdfbox.apache.org/ [Accessed May 24, 2018a].

Anon, TET. Available at:

http://www.pdflib.com/products/tet/ [Accessed May

24, 2018b].

Crochemore, M. et al., 2015. The longest common

substring problem. Mathematical Structures in

Computer Science, 27(02), pp.277–295.

Han, H., Giles, C. L., & Manavoglu, E., 2003. Automatic

document metadata extraction using support vector

machines. Proceedings of the 2003 Joint Conference on

Digital Lib. Available at:

http://dx.doi.org/10.1109/jcdl.2003.1204842.

Kim, E. et al., 2017. Materials Synthesis Insights from

Scientific Literature via Text Extraction and Machine

Learning. Chemistry of materials: a publication of the

American Chemical Society, 29(21), pp.9436–9444.

Lipinski, M. et al., 2013. Evaluation of Header Metadata

Extraction Approaches and Tools for Scientific PDF

Documents. Available at:

https://books.google.com/books/about/Evaluation_of_

Header_Metadata_Extraction.html?hl=&id=j7JCAQA

ACAAJ.

Liu, R., & McKie, J. X.., PyMuPDF. Available at:

http://pymupdf.readthedocs.io/en/latest/ [Accessed

May 24, 2018].

Lopez, P., 2009. GROBID: Combining Automatic

Bibliographic Data Recognition and Term Extraction

for Scholarship Publications. , pp.473–474.

Marek, M., Pecina, P., & Spousta, M., 2007. Web page

cleaning with conditional random fields. In Fairon, C.,

Naets, H., Kilgarriff, A., & de Schryver, G.-M., eds.

_Building and Exploring Web Corpora (WAC3 - 2007):

Proceedings of the 3rd web as corpus workshop,

incorporating cleaneval_, pp. 155-162.

Myers, D. & McGuffee, J.W., 2015. Choosing Scrapy.

Journal of Computing Sciences in Colleges, 31(1),

pp.83–89.

Noonburg, D., Poppler. Available at:

http://poppler.freedesktop.org [Accessed May 24,

http://paperpile.com/b/3AF9L8/4xht
http://paperpile.com/b/3AF9L8/4xht
https://pdfbox.apache.org/
http://paperpile.com/b/3AF9L8/4xht
http://paperpile.com/b/3AF9L8/MTnQ
http://paperpile.com/b/3AF9L8/MTnQ
http://www.pdflib.com/products/tet/
http://paperpile.com/b/3AF9L8/MTnQ
http://paperpile.com/b/3AF9L8/MTnQ
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/8ztt
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/UQYD
http://dx.doi.org/10.1109/jcdl.2003.1204842
http://paperpile.com/b/3AF9L8/UQYD
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/CFsr
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/ikx3
https://books.google.com/books/about/Evaluation_of_Header_Metadata_Extraction.html?hl=&id=j7JCAQAACAAJ
https://books.google.com/books/about/Evaluation_of_Header_Metadata_Extraction.html?hl=&id=j7JCAQAACAAJ
https://books.google.com/books/about/Evaluation_of_Header_Metadata_Extraction.html?hl=&id=j7JCAQAACAAJ
http://paperpile.com/b/3AF9L8/ikx3
http://paperpile.com/b/3AF9L8/dJRM
http://paperpile.com/b/3AF9L8/dJRM
http://pymupdf.readthedocs.io/en/latest/
http://paperpile.com/b/3AF9L8/dJRM
http://paperpile.com/b/3AF9L8/dJRM
http://paperpile.com/b/3AF9L8/zbgX
http://paperpile.com/b/3AF9L8/zbgX
http://paperpile.com/b/3AF9L8/zbgX
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/Yefp
http://paperpile.com/b/3AF9L8/mUmJ
http://paperpile.com/b/3AF9L8/mUmJ
http://poppler.freedesktop.org/
http://paperpile.com/b/3AF9L8/mUmJ

2018].

Paterson, M. & Dančík, V., 1994. Longest common

subsequences. In Mathematical Foundations of

Computer Science 1994. International Symposium on

Mathematical Foundations of Computer Science.

Springer, Berlin, Heidelberg, pp. 127–142.

Prasad, A., Kaur, M. & Kan, M.-Y., 2018. Neural ParsCit:

a deep learning-based reference string parser.

International Journal on Digital Libraries. Available

at: http://dx.doi.org/10.1007/s00799-018-0242-1.

Weninger, T., Hsu, W. H., & Han, J., 2010. CETR - content

extraction via tag ratios. In _Proceedings of the 19th

International World Wide Web Conference (WWW

2010)_, pp. 971-980. doi:10.1145/1772690.1772789

Wu, J. et al., 2015. PDFMEF. In Proceedings of the

Knowledge Capture Conference on ZZZ - K-CAP 2015.

Available at:

http://dx.doi.org/10.1145/2815833.2815834.

Xia, X., 2007. _Bioinformatics and the Cell: Modern

Computational Approaches in Genomics, Proteomics

and Transcriptomics_, pp. 24-48. New York, NY, USA:

Springer.

http://paperpile.com/b/3AF9L8/mUmJ
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/RdDH
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6Uuj
http://dx.doi.org/10.1007/s00799-018-0242-1
http://paperpile.com/b/3AF9L8/6Uuj
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://paperpile.com/b/3AF9L8/6X6s
http://dx.doi.org/10.1145/2815833.2815834
http://paperpile.com/b/3AF9L8/6X6s

	1 INTRODUCTION
	2 METHODOLOGY

