
Improving HPC System Performance by Predicting Job
Resources via Supervised Machine Learning

Mohammed Tanash
Kansas State University
Manhattan, Kansas
tanash@ksu.edu

Brandon Dunn
Kansas State University
Manhattan, Kansas
brdunn@ksu.edu

Daniel Andresen
Kansas State University
Manhattan, Kansas

dan@ksu.edu

William Hsu
Kansas State University
Manhattan, Kansas
bhsu@ksu.edu

Huichen Yang
Kansas State University
Manhattan, Kansas
huichen@ksu.edu

Adedolapo Okanlawon
Kansas State University
Manhattan, Kansas

arokanlawon@ksu.edu

ABSTRACT
High-Performance Computing (HPC) systems are resources utilized
for data capture, sharing, and analysis. The majority of our HPC
users come from other disciplines than Computer Science. HPC
users including computer scientists have difficulties and do not
feel proficient enough to decide the required amount of resources
for their submitted jobs on the cluster. Consequently, users are
encouraged to over-estimate resources for their submitted jobs,
so their jobs will not be killing due insufficient resources. This
process will waste and devours HPC resources; hence, will lead
to inefficient cluster utilization. We created a supervised machine
learning model and integrated it into the Slurm resource manager
simulator to predict the amount of required memory resources
(Memory) and the required amount of time to run the computation.
Our model involved using different machine learning algorithms.
Our goal is to integrate and test the proposed supervised machine
learning model on the Slurm. We used over 10000 tasks selected
from our HPC log files to evaluate the performance and the accuracy
of our integrated model. The purpose of our work is to increase the
performance of the Slurm by predicting the amount of the required
jobs memory resources and the time required for each particular
job in order to improve the utilization of the HPC system using our
integrated supervised machine learning model.

Our results indicate that for larger jobs our model helps dramat-
ically reduce computational turnaround time (from five days to ten
hours for large jobs), substantially increased utilization of the HPC
system, and decreased the average waiting time for the submitted
jobs.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning;Artificial
intelligence; • Software and its engineering → Scheduling; •
Hardware → Testing with distributed and parallel systems;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEARC’19, July 2019, Chicago, Illinois USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
HPC, Scheduling, Supervised Machine Learning, Slurm, Perfor-
mance, User Modeling

1 INTRODUCTION
HPC systems have become more well-known and available to users
among the universities and research centers, to name a few. Users
rely on running their extensive computations on these machines.
One of the most critical parts of the HPC system is the scheduler,
which is a piece of software on a high-performance computing
cluster which decides and controls what calculations to run next
and wherein the HPC systems [22]. Schedulers can become a bottle-
neck for HPC systems through handling vast numbers of submitted
jobs that are requesting an extensive amount of cluster resources
(CPUs and memory). Users of the HPC systems come from differ-
ent disciplines. Particular fields in science and engineering such
as atmospheric sciences, chemical separations, astrophysics, geo-
information science, and evolutionary biology rely on and demand
HPC resources through simulations, experiments, and dealing with
a tremendous amount of data [11] [21]. These users are usually
not familiar and do not have a good knowledge and experience to
estimate what exactly their jobs need, and the scheduler does not
know any better. Calculating the resource needs for a particular
job is a hard thing even for computer scientists. On the other hand,
HPC users are implicitly encouraged to overestimate predictions
in terms of memory, CPUs, and time so they will avoid severe con-
sequences and their jobs will not be killed due to an insufficient
amount of resources. Overestimate job resources will negatively
impact the performance of the scheduler by wasting infrastructure
resources; lower throughput; and leads to longer user response
time.

1.1 SlurmWorkload Manager
There are different varieties of job schedulers such as SGE (Sun
Grid Engine) [14], Maui Cluster Scheduler [2], TORQUE (Tera-scale
Open-source Resource and Queue manager) [6], and PBS (Portable
Batch System) [4]. Slurm (Simple Linux Utility for Resource Man-
agement) which is one of the most popular among all of them [22].
Slurm is an open source; fault tolerant; secure; highly configurable;
highly scalable, and support most of Unix variants .Slurm role is
both workload manager and a job scheduler, which makes Slurm

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PEARC’19, July 2019, Chicago, Illinois USA M. Tanash et al.

more convenient to use. Resource manager role is allocating re-
sources such as nodes, sockets, cores, hyper-threads, memory, inter-
connect, and other generic resources within the HPC environment.
While the scheduler role is managing the queue of work jobs includ-
ing different scheduling algorithms such as fair share scheduling,
preemption, gang scheduling, advanced reservation, etc. [5].

1.2 Slurm Simulator
In order to test our module, we implemented a machine learning
module and testing it using the Slurm simulator developed by Center
for Computational Research, SUNY University at Buffalo. The Slurm
simulator is located in the Github [3]. The Slurm simulator was
developed to help the administrators to choose the best Slurm
configuration while avoiding impacting the existing production
system. We used this Slurm simulator because it is implemented
from a modification of the actual Slurm code while disabling some
unnecessary functionalities which does not affect the functionality
of the real Slurm, and it can simulate up to 17 days of work in an
hour [19]. hence, we can test our models accurately and quickly.

Slurm is a vital component of supercomputers but using it is
hard, and this leads to inefficiencies. Hence, we are trying to use
supervised machine learning to address these efficiencies. This
entails first defining inference tasks: regression-based estimation
of the probability of a job being killed given its runtime parameters
and given a user’s historical track record to date; a classification-
based prediction of the outcome of the current run, computed by
estimating the odds of specific outcomes (or log odds, in the case
of logistic regression), and finally an expected utility based on
probability distribution over outcomes.While the first two use cases
are purely predictive and solvable by supervised or semisupervised
inductive learning, the third presents an opportunity for sequential
problem solving, towards reinforcement learning-based automation
(learning to act).

We are focused on developing a predictive analytics capability for
Slurm so it can predict needed amount of memory resources and re-
quired running time for each particular submitted jobs (regression).
We hope to improve the efficiency of Slurm and the HPC systems
itself by increase system throughput; increase system utilization;
decrease turnaround time, and decrease average job waiting time.
To do so, we train different models with different machine learn-
ing algorithms described in Section 3. In Section 4 we present the
results of our experiments, and conclude in Section 5.

2 RELATEDWORK
The primary research conducted in a related field of study focused
on predicting the length of time of the jobs temporarily waiting in
the queue. Besides, the previous research either predicted memory
usage of the jobs or predicted the execution time of the jobs running
on the cluster. The central point and novel contribution of our study
is to predict and determine the resources needed to accomplish the
jobs submitted on the cluster and determine which is more harmful
for the HPC system, overestimate the memory or the time for the
jobs running on the cluster?

Matsunaga and Fortes [18] introduced an extended machine
learning tree algorithm called Predicting Query Runtime 2 (PQR2).

This method is a modified implementation of an existing classifica-
tion tree algorithm (PQR). PQR2 focused on the two bioinformatics
applications, BLAST, and RAxML. Their method increased the accu-
racy of predicting the job execution time, memory and space usage,
and decreased the average percentage error for those applications.

Warren Smith [20] introduced a lower prediction error rate ma-
chine learning method based on instance-based learning (IBL) tech-
niques to predict job execution times, queue wait time, and file
transfer time.

Kumar and Vadhiyar [16] developed a prediction system called
Predicting Quick Starters (PQStar) for identified and prediction of
quick starters jobs (jobs who has waiting time < 1 hour). PQStar
prediction based on jobs request size and estimated run-time time,
queue and processor occupancy states.

García [12] study and found that automatically collecting and
combining real performance running job data specifically "mem-
ory bandwidth usage of applications", and scheduling data that
extracted from the hardware counters during jobs execution and
used it again in the future for scheduling purposes can improve
HPC scheduling performance and reduce the amount of waste re-
sources and decrease the number of killed jobs due to reaching their
execution time limit.

Gaussier et al. found that using a more limited approach to
machine learning on HPC log data to predict jobs running time is an
effective method for helping and improving scheduling algorithms
and reduced the average bounded slowdown [13].

Other works focused on predict and maximize power consump-
tion for scientific applications and maximize performance using
machine learning techniques [9] [10] .

3 IMPLEMENTATION
In this section, we will explain the workflow for our model, our
machine learning algorithms used in our model, the data and the
experimental testbeds used, and the features used for our machine
learning modeling.

3.1 Workflow Model
The workflowmodel of our work described in Figure 1 as follows. 1)
The user submits their jobwhich is including the amount of memory
and requested time limit for the proposed job. 2) The submitted job
will be passed through our machine learning model to predict the
amount of the required memory and the amount of time needed
for the job to run. 3) Our model will update the amount of memory
resources and update the amount of time required for the submitted
job. 4) The user will be notified about the changes to their jobs.
5) Finally, The updated job will be scheduled for running on the
cluster.

3.2 Data Preparation and Feature Analysis
For training our machine learning model, we used fourteen mil-
lion instances which cover approximately eight years of log history
data between the years 2009 to 2017 from our local HPC cluster,
“Beocat.” Each instance on the log file has forty-five features. We
chose eight features as described in Table 1 in each instance of
the fourteen million total instances used for training the machine
learning model. Beocat is no cost educational system, and the most

Improving HPC System Performance by Predicting Job Resources via Supervised Machine LearningPEARC’19, July 2019, Chicago, Illinois USA

Figure 1: Work Flow Diagram for our Model.

significant cluster in the state of Kansas.. It is located at Kansas State
University and operated by the Computer Science department [1].

3.3 Machine Learning Algorithms
Several discriminative models from the scikit-learnmachine learn-
ing library [7] [17] were trained to implement predictive functional-
ity in our experiments. Data preparation steps included data clean-
ing by means of validating the data model for logged data and
applying transformations to normalize the data, reduce redundan-
cies, and otherwise standardize the coalesced data model. For the
baseline predictive task, we specified a classification target: specifi-
cally, learning the concept of a job that is more likely than not to be
killed given historical and runtime variables. This admits the use
of a logistic regression or logit model, support vector machines, or
k-nearest neighbor, whereas for the planned expected utility estima-
tion task, estimating the actual probability of a job being killed is a
genera regression task [15] that admits linear, distance-weighted, or
support vector regression, as well as probit and generative models.

For the regression task, we used several supervised models, in-
cluding linear regression, LassoLarsIC (L1 regularization), ridge
regression (L2 regularization), ElasticNetCV (L1/L2 ratio), and a
decision tree regressor. For the linear discriminants and their use
on this task, we refer the interested reader to [8]. Using these flexi-
ble representations admits a balance of generalization quality (via
overfitting control) and explainability.

4 RESULTS AND DISCUSSION
In this section, we describe, discuss and evaluate our machine learn-
ing algorithms results, and the strategy used for our experiment by
presenting results and graphs consisting of quantitative metrics.

4.1 Machine Learning Techniques
There are various machine learning algorithms available, and it is
difficult to decide which supervised machine learning algorithm
provided the best results for our module. Hence, we implemented
our model using five supervised machine learning algorithms and
trained them using our 14 million instances to predict the required

time and memory. The statistical measures of the coefficient of
determination of the machine learning algorithms shown in Table 2
and Table 3 respectively. Based on our results we chose Decision-
TreeRegressor algorithm in our model since it has the most sig-
nificant R-squared value which means the most fitted data to the
regression line.

The legend for Table 2 and table 2 described as follows:

• LR: Linear Regression
• LLIC: LassoLarsIC Regression
• ENCV: ElasticNetCV Regression
• RG: Ridge Regression
• DTR: Decision Tree Regression

4.2 Evaluating Our Model
In this subsection, we show results and evaluate our model. To do
so, we test our model using two testbeds (Testbed-1) and (Testbed-2).
Each testbed is evaluated based on three metrics as follows:

• Submission and Execution Time
• System Utilization
• Backfill-Sched Performance

Submission and Execution Time shows the difference be-
tween the job submission time and the execution time (when the
job is submitted, start and duration of the run). System Utiliza-
tion measure how efficiently the system is utilizing the resources,
while the Backfill-Sched Performance shows the performance of the
backfill-sched algorithm helping the main scheduler to fit more
jobs within the cluster to increase resource utilization.

We used the Slurm Simulator to examine each metric above by
comparing the results of the following:

• Running each testbed using user requested memory and
run time.

• Running each testbed using the actual memory usage and
duration.

• Running each testbed using Predicted memory and pre-
dicted run time.

PEARC’19, July 2019, Chicago, Illinois USA M. Tanash et al.

Table 1: Feature Selected

Feature A Type Description

job _id Numeric Id of submitted job
username Text User name of submitted job
submit Date Date and time to submit job
wclimit Numeric Requested time in minutes (predicted variable)
duration Numeric Actual running wall time for the job in seconds

cpu_per_task Numeric Number of requested CPU’s per task
req_mem Numeric Requested memory for job at submission time in MB (predicted variable)

req _mem _per _cpu Numeric Required memory per CPU

Table 2: Wall Clock Time Limit Prediction Algorithms Re-
sults

Model R2 (%) Time (Second)

LLIC 0.0677 0.30
LLIC 0.0677 0.44
ENCV 0.0677 4.32
RG 0.0677 0.18
DTR 0.611 7.53

Table 3: Memory Required Prediction Algorithms Results

Model R2 (%) Time (Second)

LR 0.174 0.39
LLIC 0.174 0.46
ENCV 0.174 4.98
RG 0.174 0.12
DTR 0.638 8.28

4.2.1 Testbed-1. Testbed-1 contains larger jobs (jobswhich are
requesting at least 4GB of memory and four cores per task). Testbed-
1 includes a set of a thousand jobs. Figure 2 shows submission
and execution time metric based on the job_id, start time, and the
execution time for (Requested vs. Actual vs. Predicted) for the
jobs included in Testbed-1. The graph shows that it takes around
five days to complete the execution for all of the jobs using user
requested memory and time, while it takes only around ten hours
to complete the running for the jobs using the actual and predicted
time and memory for the jobs. Based on the results, our model
predicted the values for the required time and memory accurately.

Figure 3 shows that using our module helped the HPC system
achieved higher utilization compared to the utilization of the HPC
system that used unmodified user requested resources. Figure 4
indicates that the backfill-sched algorithm has achieved more effi-
ciency on the testbed that used our module compared to the ones
that did not.

These results were achieved because using our model in most
cases reduces the amount of resources required by the user submit-
ted jobs. Hence, the HPC system has more available resources to
fit more jobs in the system. Thus, the backfill schedule becomes

Table 4: Average Waiting and Turnaround Time (Requested
vs Actual vs Predicted) For Jobs in Testbed-1

Avg Wait Time (Hour) Avg TA Time (Hour)

Requested 45.37 46.29
Actual 3.90 4.82

Predicted 4.00 4.94

Table 5: Average Waiting and Turnaround Time (Requested
vs Actual vs Predicted) For Jobs in Testbed-2

Avg Wait Time (Hour) Avg TA Time (Hour)

Requested 0.08 3.90
Actual 0.05 3.23

Predicted 0.06 3.54

less needed and the overall system more efficient by using these
available resources.

Table 4 provides the calculated average waiting time and aver-
age turn-around time for the jobs in Testbed-1 for each requested,
actual, and predicted runs. Using our model significantly reduced
the average waiting time from 45.37 hours to 3.9 hours and average
turnaround time from 46.29 hours to 4.94. Both predicted average
waiting time and turn-around time is almost exactly the same as
the actual average waiting time and turnaround time for jobs in
testbed-1.

4.2.2 Testbed-2. Testbed-2 contains smaller jobs (jobs which
are requesting less than 4GB of memory and four cores per task).
Testbed-2 includes a set of ten thousand jobs.

While the results were less impressive than Testbed-2, Figure 5
and 6 shows that our predicted model achieved better utilization
and better backfilling performance. Moreover, Table 5 shows that
our predicted model incrementally reduced the average waiting
and turnaround time from (0.08 to 0.06 hours) and from (3.90 to
3.54 hours) respectively.

Improving HPC System Performance by Predicting Job Resources via Supervised Machine LearningPEARC’19, July 2019, Chicago, Illinois USA

Figure 2: Jobs Submission and Running time (Requested vs Actual vs Predicted) for Jobs in Testbed-1. Note dramatic improve-
ment of Y axis range between graphs.

Figure 3: Utilization (Requested vs Actual vs Predicted) for Jobs in Testbed-1.

Figure 4: Backfill-Sched Performance for Jobs in Testbed-1

4.3 Predicting Memory Required vs. Predicting
Time Required

In this results subsection, we will discuss and show the results
that answer a question "Which is more important to predict?
Required memory or required time?"

Figure 7 shows the submission and running times for two runs
of Testbed-1. One run is using our model where we are predicting
only the required memory (Red) and the other one predicting the
required time (Blue). This is mostly caused by inaccurate estimation
of the time and memory equally by jobs submitted by the users.

Figure 8 and 9 shows the comparison of the utilization and the
performance of backfill-sched for the system by running jobs in
Testbed-1 on the Slurm Simulator using ((Requested vs Actual vs
Required Time Predicted vs Memory Predicted vs Required Time
and Memory Predicted).

Our results indicates that both memory prediction and time
requested prediction are highly valuable and are almost equally
important because they achieved similar performance as shown

	Abstract
	1 Introduction
	1.1 Slurm Workload Manager
	1.2 Slurm Simulator

	2 Related Work
	3 Implementation
	3.1 Workflow Model
	3.2 Data Preparation and Feature Analysis
	3.3 Machine Learning Algorithms

	4 Results and Discussion
	4.1 Machine Learning Techniques
	4.2 Evaluating Our Model
	4.3 Predicting Memory Required vs. Predicting Time Required

	5 CONCLUSIONS
	6 FUTURE WORK
	Acknowledgments
	References

