SEARCH STRATEGIES FOR Al PRODUCTION SYSTEMS
f(ne) = g(ng) + h(ny)

= g*(ng) + h(n;) (RESULT?Y)

= g*(m) + c(ngy,nz) + h(ny)

= g(ny) +c(np,ny)+ h
(RESULT 7). o)+ h(na)

Since the monotone restriction implies

c(ny,ny) + h(ny) = h(ny),

we have
f(ng) =g(n;) + h(ny) = f(ny).

Since this fact is true for any adj i .
nodes expanded by A*, we lz'avejacent pair of nodes in the sequence of

RESULT 8: If the monotone restriction is satisfied,
the f values of the sequence of nodes
expanded by A* is nondecreasing.

no:?;h;r;sthe monotone restriction is not satisfied, it is possible that some
Expinded ioztzall‘:lz f value lat expansion than that of a previously
) . can exploit this observation to impr
zfn:r)l'do(ti‘ A* under this condition. By RESULT 5 wlrl)ezvflotg: :ﬁ};
© gmaii , fl (rtI))=f ’."(s). Suppose, during the execution of A*, we
mantain ag c(i) dal vanal?le, F, as the maximum of the f'values of all n’odes
i hgsa}n(ed. Certainly F < f*(s) at all times. If ever a node, n, on
oventually bene)x:a r};’i :rie lI(nc;‘w by ltlhe corollary to RESULT 3 that it ’will
. In fact, there may be several nod
whose f values are strictl ? ove. from these,
y less than F. Rather th
v ' an choose, from th
th:tsr:;):l;aewtlth t:le smallest fvalue, we might rather choose that node \5;:;
st g value. (All of them must eventually be expanded anyway.)

Th . .
b t; :ﬁf;er(;tt (;)fattlllllsda}ltered n‘;)de selection rule is to enhance the chances
iscovered to a node will be an opti
even when the monotone restriction i i e o
ven w on is not satisfied, this al i i
diminish the need for poi irection i oot (N
pointer redirection in step 7 of th i
that when the monotone restriction i isfiod, RE L o (e
(estriction is satisfied, RESULT 8 i i

there will never be a node on OPEN whose f value is less thlantl1pll7l ;S that

HEURISTIC GRAPH-SEARCH PROCEDURES

2.46. THE HEURISTIC POWER OF EVALUATION
FUNCTIONS

The selection of the heuristic function is crucial in determining the

heuristic power of search algorithm A. Using h = 0 assures admissibility

but results in a breadth-first search and is thus usually inefficient. Setting
h equal to the highest possible lower bound on h* expands the fewest
nodes consistent with maintaining admissibility.

Often, heuristic power can be gained at the expense of admissibility by
using some function for h that is not a lower bound on h* . This added
heuristic power then allows us to solve much harder problems. In the
8-puzzle, the function h(n) = W(n) (where W(n)is the number of tiles

in the wrong place) is a lower bound on h*(n), but it does not provide a

very good estimate of the difficulty (in terms of number of steps to the
oal) of a tile configuration. A better estimate is the function
h(n) = P(n), where P(n) is the sum of the distances that each tile is

from “home” (ignoring intervening pieces). Even this estimate is t00

coarse, however, in that it does not accurately appraise the difficulty of
exchanging the positions of two adjacent tiles.

An estimate that works quite well for the 8-puzzle is

h(n)=P(n) + 3S(n).

The quantity S(n) is a sequence score obtained by checking around the
very tile not followed by its

noncentral squares in turn, allotting 2 for e
PrOpET Successor and allotting O for every other tile; a piece in the center
scores one. We note that this h function does not provide a lower bound
for h* . With this heuristic function used in the evaluation function
f(n) = g(n) + h(n), we can easily solve much more difficult 8-puzzles
than the one we solved earlier. In Figure 2.9 we show the search tree
resulting from applying GRAPHSEARCH with this evaluation function

to the problem of transforming

216
4 8

